Safe Haskell | Trustworthy |
---|---|
Language | Haskell2010 |
Fixed points of a functor.
Type f
should be a Functor
if you want to use
simple recursion schemes or Traversable
if you want to
use monadic recursion schemes. This style allows you to express
recursive functions in non-recursive manner.
You can imagine that a non-recursive function
holds values of the previous iteration.
An example:
First we define a base functor. The arguments b
are recursion points.
>>>
data ListF a b = Nil | Cons a b deriving (Show, Functor)
The list is then a fixed point of ListF
>>>
type List a = Fix (ListF a)
We can write length
function. Note that the function we give
to foldFix
is not recursive. Instead the results
of recursive calls are in b
positions, and we need to deal
only with one layer of the structure.
>>>
:{
let length :: List a -> Int length = foldFix $ \x -> case x of Nil -> 0 Cons _ n -> n + 1 :}
If you already have recursive type, like '[Int]',
you can first convert it to `Fix (ListF a)` and then foldFix
.
Alternatively you can use recursion-schemes
combinators
which work directly on recursive types.
Synopsis
- newtype Fix f = Fix {}
- hoistFix :: Functor f => (forall a. f a -> g a) -> Fix f -> Fix g
- hoistFix' :: Functor g => (forall a. f a -> g a) -> Fix f -> Fix g
- foldFix :: Functor f => (f a -> a) -> Fix f -> a
- unfoldFix :: Functor f => (a -> f a) -> a -> Fix f
- wrapFix :: f (Fix f) -> Fix f
- unwrapFix :: Fix f -> f (Fix f)
- newtype Mu f = Mu {
- unMu :: forall a. (f a -> a) -> a
- hoistMu :: (forall a. f a -> g a) -> Mu f -> Mu g
- foldMu :: (f a -> a) -> Mu f -> a
- unfoldMu :: Functor f => (a -> f a) -> a -> Mu f
- wrapMu :: Functor f => f (Mu f) -> Mu f
- unwrapMu :: Functor f => Mu f -> f (Mu f)
- data Nu f = forall a. Nu (a -> f a) a
- hoistNu :: (forall a. f a -> g a) -> Nu f -> Nu g
- foldNu :: Functor f => (f a -> a) -> Nu f -> a
- unfoldNu :: (a -> f a) -> a -> Nu f
- wrapNu :: Functor f => f (Nu f) -> Nu f
- unwrapNu :: Functor f => Nu f -> f (Nu f)
- refold :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
- foldFixM :: (Monad m, Traversable t) => (t a -> m a) -> Fix t -> m a
- unfoldFixM :: (Monad m, Traversable t) => (a -> m (t a)) -> a -> m (Fix t)
- refoldM :: (Monad m, Traversable t) => (t b -> m b) -> (a -> m (t a)) -> a -> m b
- cata :: Functor f => (f a -> a) -> Fix f -> a
- ana :: Functor f => (a -> f a) -> a -> Fix f
- hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
- cataM :: (Monad m, Traversable t) => (t a -> m a) -> Fix t -> m a
- anaM :: (Monad m, Traversable t) => (a -> m (t a)) -> a -> m (Fix t)
- hyloM :: (Monad m, Traversable t) => (t b -> m b) -> (a -> m (t a)) -> a -> m b
Fix
A fix-point type.
Instances
(Typeable f, Data (f (Fix f))) => Data (Fix f) Source # | |
Defined in Data.Fix gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fix f -> c (Fix f) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fix f) Source # toConstr :: Fix f -> Constr Source # dataTypeOf :: Fix f -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fix f)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fix f)) Source # gmapT :: (forall b. Data b => b -> b) -> Fix f -> Fix f Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fix f -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fix f -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Fix f -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fix f -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) Source # | |
Generic (Fix f) Source # | |
Read1 f => Read (Fix f) Source # | |
Show1 f => Show (Fix f) Source # | |
NFData1 f => NFData (Fix f) Source # | |
Eq1 f => Eq (Fix f) Source # | |
Ord1 f => Ord (Fix f) Source # | |
Hashable1 f => Hashable (Fix f) Source # | |
type Rep (Fix f) Source # | |
hoistFix :: Functor f => (forall a. f a -> g a) -> Fix f -> Fix g Source #
Change base functor in Fix
.
foldFix :: Functor f => (f a -> a) -> Fix f -> a Source #
Fold Fix
.
>>>
let fp = unfoldFix (\i -> if i < 4 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
foldFix (elimListF 0 (+)) fp
6
unfoldFix :: Functor f => (a -> f a) -> a -> Fix f Source #
Unfold Fix
.
>>>
unfoldFix (\i -> if i < 4 then Cons i (i + 1) else Nil) (0 :: Int)
Fix (Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix (Cons 3 (Fix Nil))))))))
wrapFix :: f (Fix f) -> Fix f Source #
Wrap Fix
.
>>>
let x = unfoldFix (\i -> if i < 3 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
wrapFix (Cons 10 x)
Fix (Cons 10 (Fix (Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix Nil))))))))
Since: 0.3.2
unwrapFix :: Fix f -> f (Fix f) Source #
Unwrap Fix
.
>>>
let x = unfoldFix (\i -> if i < 3 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
unwrapFix x
Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix Nil)))))
Since: 0.3.2
Mu - least fixed point
Least fixed point. Efficient folding.
foldMu :: (f a -> a) -> Mu f -> a Source #
Fold Mu
.
>>>
let mu = unfoldMu (\i -> if i < 4 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
foldMu (elimListF 0 (+)) mu
6
unfoldMu :: Functor f => (a -> f a) -> a -> Mu f Source #
Unfold Mu
.
>>>
unfoldMu (\i -> if i < 4 then Cons i (i + 1) else Nil) (0 :: Int)
unfoldMu unFix (Fix (Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix (Cons 3 (Fix Nil)))))))))
wrapMu :: Functor f => f (Mu f) -> Mu f Source #
Wrap Mu
.
>>>
let x = unfoldMu (\i -> if i < 3 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
wrapMu (Cons 10 x)
unfoldMu unFix (Fix (Cons 10 (Fix (Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix Nil)))))))))
Since: 0.3.2
unwrapMu :: Functor f => Mu f -> f (Mu f) Source #
Unwrap Mu
.
>>>
let x = unfoldMu (\i -> if i < 3 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
unwrapMu x
Cons 0 (unfoldMu unFix (Fix (Cons 1 (Fix (Cons 2 (Fix Nil))))))
Since: 0.3.2
Nu - greatest fixed point
Greatest fixed point. Efficient unfolding.
forall a. Nu (a -> f a) a |
foldNu :: Functor f => (f a -> a) -> Nu f -> a Source #
Fold Nu
.
>>>
let nu = unfoldNu (\i -> if i < 4 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
foldNu (elimListF 0 (+)) nu
6
unfoldNu :: (a -> f a) -> a -> Nu f Source #
Unfold Nu
.
>>>
unfoldNu (\i -> if i < 4 then Cons i (i + 1) else Nil) (0 :: Int)
unfoldNu unFix (Fix (Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix (Cons 3 (Fix Nil)))))))))
wrapNu :: Functor f => f (Nu f) -> Nu f Source #
Wrap Nu
.
>>>
let x = unfoldNu (\i -> if i < 3 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
wrapNu (Cons 10 x)
unfoldNu unFix (Fix (Cons 10 (Fix (Cons 0 (Fix (Cons 1 (Fix (Cons 2 (Fix Nil)))))))))
Since: 0.3.2
unwrapNu :: Functor f => Nu f -> f (Nu f) Source #
Unwrap Nu
.
>>>
let x = unfoldNu (\i -> if i < 3 then Cons i (i + 1) else Nil) (0 :: Int)
>>>
unwrapNu x
Cons 0 (unfoldNu unFix (Fix (Cons 1 (Fix (Cons 2 (Fix Nil))))))
Since: 0.3.2
Refolding
refold :: Functor f => (f b -> b) -> (a -> f a) -> a -> b Source #
Refold one recursive type into another, one layer at the time.
Monadic variants
unfoldFixM :: (Monad m, Traversable t) => (a -> m (t a)) -> a -> m (Fix t) Source #
Monadic anamorphism.
refoldM :: (Monad m, Traversable t) => (t b -> m b) -> (a -> m (t a)) -> a -> m b Source #
Monadic hylomorphism.
Deprecated aliases
cata :: Functor f => (f a -> a) -> Fix f -> a Source #
Deprecated: Use foldFix
Catamorphism or generic function fold.
ana :: Functor f => (a -> f a) -> a -> Fix f Source #
Deprecated: Use unfoldFix
Anamorphism or generic function unfold.
hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b Source #
Deprecated: Use refold
Hylomorphism is anamorphism followed by catamorphism.
cataM :: (Monad m, Traversable t) => (t a -> m a) -> Fix t -> m a Source #
Deprecated: Use foldFixM
Monadic catamorphism.
anaM :: (Monad m, Traversable t) => (a -> m (t a)) -> a -> m (Fix t) Source #
Deprecated: Use unfoldFixM
Monadic anamorphism.
hyloM :: (Monad m, Traversable t) => (t b -> m b) -> (a -> m (t a)) -> a -> m b Source #
Deprecated: Use refoldM
Monadic hylomorphism.