{-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} #if defined(__GLASGOW_HASKELL__) {-# LANGUAGE Trustworthy #-} #endif {-# OPTIONS_HADDOCK not-home #-} #include "containers.h" ----------------------------------------------------------------------------- -- | -- Module : Data.Map.Strict.Internal -- Copyright : (c) Daan Leijen 2002 -- (c) Andriy Palamarchuk 2008 -- License : BSD-style -- Maintainer : [email protected] -- Portability : portable -- -- = WARNING -- -- This module is considered __internal__. -- -- The Package Versioning Policy __does not apply__. -- -- The contents of this module may change __in any way whatsoever__ -- and __without any warning__ between minor versions of this package. -- -- Authors importing this module are expected to track development -- closely. -- -- = Description -- -- An efficient implementation of ordered maps from keys to values -- (dictionaries). -- -- API of this module is strict in both the keys and the values. -- If you need value-lazy maps, use "Data.Map.Lazy" instead. -- The 'Map' type is shared between the lazy and strict modules, -- meaning that the same 'Map' value can be passed to functions in -- both modules (although that is rarely needed). -- -- These modules are intended to be imported qualified, to avoid name -- clashes with Prelude functions, e.g. -- -- > import qualified Data.Map.Strict as Map -- -- The implementation of 'Map' is based on /size balanced/ binary trees (or -- trees of /bounded balance/) as described by: -- -- * Stephen Adams, \"/Efficient sets: a balancing act/\", -- Journal of Functional Programming 3(4):553-562, October 1993, -- <http://www.swiss.ai.mit.edu/~adams/BB/>. -- * J. Nievergelt and E.M. Reingold, -- \"/Binary search trees of bounded balance/\", -- SIAM journal of computing 2(1), March 1973. -- -- Bounds for 'union', 'intersection', and 'difference' are as given -- by -- -- * Guy Blelloch, Daniel Ferizovic, and Yihan Sun, -- \"/Just Join for Parallel Ordered Sets/\", -- <https://arxiv.org/abs/1602.02120v3>. -- -- Note that the implementation is /left-biased/ -- the elements of a -- first argument are always preferred to the second, for example in -- 'union' or 'insert'. -- -- /Warning/: The size of the map must not exceed @maxBound::Int@. Violation of -- this condition is not detected and if the size limit is exceeded, its -- behaviour is undefined. -- -- Operation comments contain the operation time complexity in -- the Big-O notation (<http://en.wikipedia.org/wiki/Big_O_notation>). -- -- Be aware that the 'Functor', 'Traversable' and 'Data.Data.Data' instances -- are the same as for the "Data.Map.Lazy" module, so if they are used -- on strict maps, the resulting maps will be lazy. ----------------------------------------------------------------------------- -- See the notes at the beginning of Data.Map.Internal. module Data.Map.Strict.Internal ( -- * Strictness properties -- $strictness -- * Map type Map(..) -- instance Eq,Show,Read , L.Size -- * Operators , (!), (!?), (\\) -- * Query , null , size , member , notMember , lookup , findWithDefault , lookupLT , lookupGT , lookupLE , lookupGE -- * Construction , empty , singleton -- ** Insertion , insert , insertWith , insertWithKey , insertLookupWithKey -- ** Delete\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey , alter , alterF -- * Combine -- ** Union , union , unionWith , unionWithKey , unions , unionsWith -- ** Difference , difference , differenceWith , differenceWithKey -- ** Intersection , intersection , intersectionWith , intersectionWithKey -- ** Disjoint , disjoint -- ** Compose , compose -- ** General combining function , SimpleWhenMissing , SimpleWhenMatched , merge , runWhenMatched , runWhenMissing -- *** @WhenMatched@ tactics , zipWithMaybeMatched , zipWithMatched -- *** @WhenMissing@ tactics , mapMaybeMissing , dropMissing , preserveMissing , preserveMissing' , mapMissing , filterMissing -- ** Applicative general combining function , WhenMissing (..) , WhenMatched (..) , mergeA -- *** @WhenMatched@ tactics -- | The tactics described for 'merge' work for -- 'mergeA' as well. Furthermore, the following -- are available. , zipWithMaybeAMatched , zipWithAMatched -- *** @WhenMissing@ tactics -- | The tactics described for 'merge' work for -- 'mergeA' as well. Furthermore, the following -- are available. , traverseMaybeMissing , traverseMissing , filterAMissing -- *** Covariant maps for tactics , mapWhenMissing , mapWhenMatched -- ** Deprecated general combining function , mergeWithKey -- * Traversal -- ** Map , map , mapWithKey , traverseWithKey , traverseMaybeWithKey , mapAccum , mapAccumWithKey , mapAccumRWithKey , mapKeys , mapKeysWith , mapKeysMonotonic -- * Folds , foldr , foldl , foldrWithKey , foldlWithKey , foldMapWithKey -- ** Strict folds , foldr' , foldl' , foldrWithKey' , foldlWithKey' -- * Conversion , elems , keys , assocs , keysSet , fromSet -- ** Lists , toList , fromList , fromListWith , fromListWithKey -- ** Ordered lists , toAscList , toDescList , fromAscList , fromAscListWith , fromAscListWithKey , fromDistinctAscList , fromDescList , fromDescListWith , fromDescListWithKey , fromDistinctDescList -- * Filter , filter , filterWithKey , restrictKeys , withoutKeys , partition , partitionWithKey , takeWhileAntitone , dropWhileAntitone , spanAntitone , mapMaybe , mapMaybeWithKey , mapEither , mapEitherWithKey , split , splitLookup , splitRoot -- * Submap , isSubmapOf, isSubmapOfBy , isProperSubmapOf, isProperSubmapOfBy -- * Indexed , lookupIndex , findIndex , elemAt , updateAt , deleteAt , take , drop , splitAt -- * Min\/Max , lookupMin , lookupMax , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMin , updateMax , updateMinWithKey , updateMaxWithKey , minView , maxView , minViewWithKey , maxViewWithKey -- * Debugging #if defined(__GLASGOW_HASKELL__) , showTree , showTreeWith #endif , valid ) where import Prelude hiding (lookup,map,filter,foldr,foldl,null,take,drop,splitAt) import Data.Map.Internal ( Map (..) , AreWeStrict (..) , WhenMissing (..) , WhenMatched (..) , runWhenMatched , runWhenMissing , SimpleWhenMissing , SimpleWhenMatched , preserveMissing , preserveMissing' , dropMissing , filterMissing , filterAMissing , merge , mergeA , (!) , (!?) , (\\) , assocs , atKeyImpl #if MIN_VERSION_base(4,8,0) , atKeyPlain #endif , balance , balanceL , balanceR , compose , elemAt , elems , empty , delete , deleteAt , deleteFindMax , deleteFindMin , deleteMin , deleteMax , difference , disjoint , drop , dropWhileAntitone , filter , filterWithKey , findIndex , findMax , findMin , foldl , foldl' , foldlWithKey , foldlWithKey' , foldMapWithKey , foldr , foldr' , foldrWithKey , foldrWithKey' , glue , insertMax , intersection , isProperSubmapOf , isProperSubmapOfBy , isSubmapOf , isSubmapOfBy , keys , keysSet , link , lookup , lookupGE , lookupGT , lookupIndex , lookupLE , lookupLT , lookupMin , lookupMax , mapKeys , mapKeysMonotonic , maxView , maxViewWithKey , member , link2 , minView , minViewWithKey , notMember , null , partition , partitionWithKey , restrictKeys , size , spanAntitone , split , splitAt , splitLookup , splitRoot , take , takeWhileAntitone , toList , toAscList , toDescList , union , unions , withoutKeys ) #if defined(__GLASGOW_HASKELL__) import Data.Map.Internal.DeprecatedShowTree (showTree, showTreeWith) #endif import Data.Map.Internal.Debug (valid) import Control.Applicative (Const (..), liftA3) #if !MIN_VERSION_base(4,8,0) import Control.Applicative (Applicative (..), (<$>)) #endif import qualified Data.Set.Internal as Set import qualified Data.Map.Internal as L import Utils.Containers.Internal.StrictPair import Data.Bits (shiftL, shiftR) #if __GLASGOW_HASKELL__ >= 709 import Data.Coerce #endif #if __GLASGOW_HASKELL__ && MIN_VERSION_base(4,8,0) import Data.Functor.Identity (Identity (..)) #endif import qualified Data.Foldable as Foldable #if !MIN_VERSION_base(4,8,0) import Data.Foldable (Foldable()) #endif -- $strictness -- -- This module satisfies the following strictness properties: -- -- 1. Key arguments are evaluated to WHNF; -- -- 2. Keys and values are evaluated to WHNF before they are stored in -- the map. -- -- Here's an example illustrating the first property: -- -- > delete undefined m == undefined -- -- Here are some examples that illustrate the second property: -- -- > map (\ v -> undefined) m == undefined -- m is not empty -- > mapKeys (\ k -> undefined) m == undefined -- m is not empty -- [Note: Pointer equality for sharing] -- -- We use pointer equality to enhance sharing between the arguments -- of some functions and their results. Notably, we use it -- for insert, delete, union, intersection, and difference. We do -- *not* use it for functions, like insertWith, unionWithKey, -- intersectionWith, etc., that allow the user to modify the elements. -- While we *could* do so, we would only get sharing under fairly -- narrow conditions and at a relatively high cost. It does not seem -- worth the price. {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(log n)/. The expression @('findWithDefault' def k map)@ returns -- the value at key @k@ or returns default value @def@ -- when the key is not in the map. -- -- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' -- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a' -- See Map.Internal.Note: Local 'go' functions and capturing findWithDefault :: Ord k => a -> k -> Map k a -> a findWithDefault def k = k `seq` go where go Tip = def go (Bin _ kx x l r) = case compare k kx of LT -> go l GT -> go r EQ -> x #if __GLASGOW_HASKELL__ {-# INLINABLE findWithDefault #-} #else {-# INLINE findWithDefault #-} #endif {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. A map with a single element. -- -- > singleton 1 'a' == fromList [(1, 'a')] -- > size (singleton 1 'a') == 1 singleton :: k -> a -> Map k a singleton k x = x `seq` Bin 1 k x Tip Tip {-# INLINE singleton #-} {-------------------------------------------------------------------- Insertion --------------------------------------------------------------------} -- | /O(log n)/. Insert a new key and value in the map. -- If the key is already present in the map, the associated value is -- replaced with the supplied value. 'insert' is equivalent to -- @'insertWith' 'const'@. -- -- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')] -- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')] -- > insert 5 'x' empty == singleton 5 'x' -- See Map.Internal.Note: Type of local 'go' function insert :: Ord k => k -> a -> Map k a -> Map k a insert = go where go :: Ord k => k -> a -> Map k a -> Map k a go !kx !x Tip = singleton kx x go kx x (Bin sz ky y l r) = case compare kx ky of LT -> balanceL ky y (go kx x l) r GT -> balanceR ky y l (go kx x r) EQ -> Bin sz kx x l r #if __GLASGOW_HASKELL__ {-# INLINABLE insert #-} #else {-# INLINE insert #-} #endif -- | /O(log n)/. Insert with a function, combining new value and old value. -- @'insertWith' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the pair @(key, f new_value old_value)@. -- -- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] -- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWith (++) 5 "xxx" empty == singleton 5 "xxx" insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a insertWith = go where go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a go _ !kx x Tip = singleton kx x go f !kx x (Bin sy ky y l r) = case compare kx ky of LT -> balanceL ky y (go f kx x l) r GT -> balanceR ky y l (go f kx x r) EQ -> let !y' = f x y in Bin sy kx y' l r #if __GLASGOW_HASKELL__ {-# INLINABLE insertWith #-} #else {-# INLINE insertWith #-} #endif insertWithR :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a insertWithR = go where go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a go _ !kx x Tip = singleton kx x go f !kx x (Bin sy ky y l r) = case compare kx ky of LT -> balanceL ky y (go f kx x l) r GT -> balanceR ky y l (go f kx x r) EQ -> let !y' = f y x in Bin sy ky y' l r #if __GLASGOW_HASKELL__ {-# INLINABLE insertWithR #-} #else {-# INLINE insertWithR #-} #endif -- | /O(log n)/. Insert with a function, combining key, new value and old value. -- @'insertWithKey' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the pair @(key,f key new_value old_value)@. -- Note that the key passed to f is the same key passed to 'insertWithKey'. -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] -- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWithKey f 5 "xxx" empty == singleton 5 "xxx" -- See Map.Internal.Note: Type of local 'go' function insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a insertWithKey = go where go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a -- Forcing `kx` may look redundant, but it's possible `compare` will -- be lazy. go _ !kx x Tip = singleton kx x go f kx x (Bin sy ky y l r) = case compare kx ky of LT -> balanceL ky y (go f kx x l) r GT -> balanceR ky y l (go f kx x r) EQ -> let !x' = f kx x y in Bin sy kx x' l r #if __GLASGOW_HASKELL__ {-# INLINABLE insertWithKey #-} #else {-# INLINE insertWithKey #-} #endif insertWithKeyR :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a insertWithKeyR = go where go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a -- Forcing `kx` may look redundant, but it's possible `compare` will -- be lazy. go _ !kx x Tip = singleton kx x go f kx x (Bin sy ky y l r) = case compare kx ky of LT -> balanceL ky y (go f kx x l) r GT -> balanceR ky y l (go f kx x r) EQ -> let !y' = f ky y x in Bin sy ky y' l r #if __GLASGOW_HASKELL__ {-# INLINABLE insertWithKeyR #-} #else {-# INLINE insertWithKeyR #-} #endif -- | /O(log n)/. Combines insert operation with old value retrieval. -- The expression (@'insertLookupWithKey' f k x map@) -- is a pair where the first element is equal to (@'lookup' k map@) -- and the second element equal to (@'insertWithKey' f k x map@). -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) -- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) -- > insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx") -- -- This is how to define @insertLookup@ using @insertLookupWithKey@: -- -- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t -- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) -- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")]) -- See Map.Internal.Note: Type of local 'go' function insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a) insertLookupWithKey f0 kx0 x0 t0 = toPair $ go f0 kx0 x0 t0 where go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a) go _ !kx x Tip = Nothing :*: singleton kx x go f kx x (Bin sy ky y l r) = case compare kx ky of LT -> let (found :*: l') = go f kx x l in found :*: balanceL ky y l' r GT -> let (found :*: r') = go f kx x r in found :*: balanceR ky y l r' EQ -> let x' = f kx x y in x' `seq` (Just y :*: Bin sy kx x' l r) #if __GLASGOW_HASKELL__ {-# INLINABLE insertLookupWithKey #-} #else {-# INLINE insertLookupWithKey #-} #endif {-------------------------------------------------------------------- Deletion --------------------------------------------------------------------} -- | /O(log n)/. Update a value at a specific key with the result of the provided function. -- When the key is not -- a member of the map, the original map is returned. -- -- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjust ("new " ++) 7 empty == empty adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a adjust f = adjustWithKey (\_ x -> f x) #if __GLASGOW_HASKELL__ {-# INLINABLE adjust #-} #else {-# INLINE adjust #-} #endif -- | /O(log n)/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. -- -- > let f key x = (show key) ++ ":new " ++ x -- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjustWithKey f 7 empty == empty adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a adjustWithKey = go where go :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a go _ !_ Tip = Tip go f k (Bin sx kx x l r) = case compare k kx of LT -> Bin sx kx x (go f k l) r GT -> Bin sx kx x l (go f k r) EQ -> Bin sx kx x' l r where !x' = f kx x #if __GLASGOW_HASKELL__ {-# INLINABLE adjustWithKey #-} #else {-# INLINE adjustWithKey #-} #endif -- | /O(log n)/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a update f = updateWithKey (\_ x -> f x) #if __GLASGOW_HASKELL__ {-# INLINABLE update #-} #else {-# INLINE update #-} #endif -- | /O(log n)/. The expression (@'updateWithKey' f k map@) updates the -- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing', -- the element is deleted. If it is (@'Just' y@), the key @k@ is bound -- to the new value @y@. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- See Map.Internal.Note: Type of local 'go' function updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a updateWithKey = go where go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a go _ !_ Tip = Tip go f k(Bin sx kx x l r) = case compare k kx of LT -> balanceR kx x (go f k l) r GT -> balanceL kx x l (go f k r) EQ -> case f kx x of Just x' -> x' `seq` Bin sx kx x' l r Nothing -> glue l r #if __GLASGOW_HASKELL__ {-# INLINABLE updateWithKey #-} #else {-# INLINE updateWithKey #-} #endif -- | /O(log n)/. Lookup and update. See also 'updateWithKey'. -- The function returns changed value, if it is updated. -- Returns the original key value if the map entry is deleted. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")]) -- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) -- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a") -- See Map.Internal.Note: Type of local 'go' function updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a) updateLookupWithKey f0 k0 t0 = toPair $ go f0 k0 t0 where go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> StrictPair (Maybe a) (Map k a) go _ !_ Tip = (Nothing :*: Tip) go f k (Bin sx kx x l r) = case compare k kx of LT -> let (found :*: l') = go f k l in found :*: balanceR kx x l' r GT -> let (found :*: r') = go f k r in found :*: balanceL kx x l r' EQ -> case f kx x of Just x' -> x' `seq` (Just x' :*: Bin sx kx x' l r) Nothing -> (Just x :*: glue l r) #if __GLASGOW_HASKELL__ {-# INLINABLE updateLookupWithKey #-} #else {-# INLINE updateLookupWithKey #-} #endif -- | /O(log n)/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alter' can be used to insert, delete, or update a value in a 'Map'. -- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@. -- -- > let f _ = Nothing -- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > -- > let f _ = Just "c" -- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")] -- > alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")] -- -- Note that @'adjust' = alter . fmap@. -- See Map.Internal.Note: Type of local 'go' function alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a alter = go where go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a go f !k Tip = case f Nothing of Nothing -> Tip Just x -> singleton k x go f k (Bin sx kx x l r) = case compare k kx of LT -> balance kx x (go f k l) r GT -> balance kx x l (go f k r) EQ -> case f (Just x) of Just x' -> x' `seq` Bin sx kx x' l r Nothing -> glue l r #if __GLASGOW_HASKELL__ {-# INLINABLE alter #-} #else {-# INLINE alter #-} #endif -- | /O(log n)/. The expression (@'alterF' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alterF' can be used to inspect, insert, delete, or update a value in a 'Map'. -- In short: @'lookup' k \<$\> 'alterF' f k m = f ('lookup' k m)@. -- -- Example: -- -- @ -- interactiveAlter :: Int -> Map Int String -> IO (Map Int String) -- interactiveAlter k m = alterF f k m where -- f Nothing = do -- putStrLn $ show k ++ -- " was not found in the map. Would you like to add it?" -- getUserResponse1 :: IO (Maybe String) -- f (Just old) = do -- putStrLn $ "The key is currently bound to " ++ show old ++ -- ". Would you like to change or delete it?" -- getUserResponse2 :: IO (Maybe String) -- @ -- -- 'alterF' is the most general operation for working with an individual -- key that may or may not be in a given map. When used with trivial -- functors like 'Identity' and 'Const', it is often slightly slower than -- more specialized combinators like 'lookup' and 'insert'. However, when -- the functor is non-trivial and key comparison is not particularly cheap, -- it is the fastest way. -- -- Note on rewrite rules: -- -- This module includes GHC rewrite rules to optimize 'alterF' for -- the 'Const' and 'Identity' functors. In general, these rules -- improve performance. The sole exception is that when using -- 'Identity', deleting a key that is already absent takes longer -- than it would without the rules. If you expect this to occur -- a very large fraction of the time, you might consider using a -- private copy of the 'Identity' type. -- -- Note: 'alterF' is a flipped version of the @at@ combinator from -- @Control.Lens.At@. -- -- @since 0.5.8 alterF :: (Functor f, Ord k) => (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a) alterF f k m = atKeyImpl Strict k f m #ifndef __GLASGOW_HASKELL__ {-# INLINE alterF #-} #else {-# INLINABLE [2] alterF #-} -- We can save a little time by recognizing the special case of -- `Control.Applicative.Const` and just doing a lookup. {-# RULES "alterF/Const" forall k (f :: Maybe a -> Const b (Maybe a)) . alterF f k = \m -> Const . getConst . f $ lookup k m #-} #if MIN_VERSION_base(4,8,0) -- base 4.8 and above include Data.Functor.Identity, so we can -- save a pretty decent amount of time by handling it specially. {-# RULES "alterF/Identity" forall k f . alterF f k = atKeyIdentity k f #-} atKeyIdentity :: Ord k => k -> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a) atKeyIdentity k f t = Identity $ atKeyPlain Strict k (coerce f) t {-# INLINABLE atKeyIdentity #-} #endif #endif {-------------------------------------------------------------------- Indexing --------------------------------------------------------------------} -- | /O(log n)/. Update the element at /index/. Calls 'error' when an -- invalid index is used. -- -- > updateAt (\ _ _ -> Just "x") 0 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")] -- > updateAt (\ _ _ -> Just "x") 1 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")] -- > updateAt (\ _ _ -> Just "x") 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > updateAt (\_ _ -> Nothing) 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- > updateAt (\_ _ -> Nothing) 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > updateAt (\_ _ -> Nothing) 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > updateAt (\_ _ -> Nothing) (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a updateAt f i t = i `seq` case t of Tip -> error "Map.updateAt: index out of range" Bin sx kx x l r -> case compare i sizeL of LT -> balanceR kx x (updateAt f i l) r GT -> balanceL kx x l (updateAt f (i-sizeL-1) r) EQ -> case f kx x of Just x' -> x' `seq` Bin sx kx x' l r Nothing -> glue l r where sizeL = size l {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- | /O(log n)/. Update the value at the minimal key. -- -- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")] -- > updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMin :: (a -> Maybe a) -> Map k a -> Map k a updateMin f m = updateMinWithKey (\_ x -> f x) m -- | /O(log n)/. Update the value at the maximal key. -- -- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")] -- > updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMax :: (a -> Maybe a) -> Map k a -> Map k a updateMax f m = updateMaxWithKey (\_ x -> f x) m -- | /O(log n)/. Update the value at the minimal key. -- -- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")] -- > updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a updateMinWithKey _ Tip = Tip updateMinWithKey f (Bin sx kx x Tip r) = case f kx x of Nothing -> r Just x' -> x' `seq` Bin sx kx x' Tip r updateMinWithKey f (Bin _ kx x l r) = balanceR kx x (updateMinWithKey f l) r -- | /O(log n)/. Update the value at the maximal key. -- -- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")] -- > updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a updateMaxWithKey _ Tip = Tip updateMaxWithKey f (Bin sx kx x l Tip) = case f kx x of Nothing -> l Just x' -> x' `seq` Bin sx kx x' l Tip updateMaxWithKey f (Bin _ kx x l r) = balanceL kx x l (updateMaxWithKey f r) {-------------------------------------------------------------------- Union. --------------------------------------------------------------------} -- | The union of a list of maps, with a combining operation: -- (@'unionsWith' f == 'Prelude.foldl' ('unionWith' f) 'empty'@). -- -- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] -- > == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")] unionsWith :: (Foldable f, Ord k) => (a->a->a) -> f (Map k a) -> Map k a unionsWith f ts = Foldable.foldl' (unionWith f) empty ts #if __GLASGOW_HASKELL__ {-# INLINABLE unionsWith #-} #endif {-------------------------------------------------------------------- Union with a combining function --------------------------------------------------------------------} -- | /O(m*log(n\/m + 1)), m <= n/. Union with a combining function. -- -- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")] unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a unionWith _f t1 Tip = t1 unionWith f t1 (Bin _ k x Tip Tip) = insertWithR f k x t1 unionWith f (Bin _ k x Tip Tip) t2 = insertWith f k x t2 unionWith _f Tip t2 = t2 unionWith f (Bin _ k1 x1 l1 r1) t2 = case splitLookup k1 t2 of (l2, mb, r2) -> link k1 x1' (unionWith f l1 l2) (unionWith f r1 r2) where !x1' = maybe x1 (f x1) mb #if __GLASGOW_HASKELL__ {-# INLINABLE unionWith #-} #endif -- | /O(m*log(n\/m + 1)), m <= n/. -- Union with a combining function. -- -- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value -- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")] unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a unionWithKey _f t1 Tip = t1 unionWithKey f t1 (Bin _ k x Tip Tip) = insertWithKeyR f k x t1 unionWithKey f (Bin _ k x Tip Tip) t2 = insertWithKey f k x t2 unionWithKey _f Tip t2 = t2 unionWithKey f (Bin _ k1 x1 l1 r1) t2 = case splitLookup k1 t2 of (l2, mb, r2) -> link k1 x1' (unionWithKey f l1 l2) (unionWithKey f r1 r2) where !x1' = maybe x1 (f k1 x1) mb #if __GLASGOW_HASKELL__ {-# INLINABLE unionWithKey #-} #endif {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(n+m)/. Difference with a combining function. -- When two equal keys are -- encountered, the combining function is applied to the values of these keys. -- If it returns 'Nothing', the element is discarded (proper set difference). If -- it returns (@'Just' y@), the element is updated with a new value @y@. -- -- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing -- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")]) -- > == singleton 3 "b:B" differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a differenceWith f = merge preserveMissing dropMissing (zipWithMaybeMatched $ \_ x1 x2 -> f x1 x2) #if __GLASGOW_HASKELL__ {-# INLINABLE differenceWith #-} #endif -- | /O(n+m)/. Difference with a combining function. When two equal keys are -- encountered, the combining function is applied to the key and both values. -- If it returns 'Nothing', the element is discarded (proper set difference). If -- it returns (@'Just' y@), the element is updated with a new value @y@. -- -- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing -- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")]) -- > == singleton 3 "3:b|B" differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a differenceWithKey f = merge preserveMissing dropMissing (zipWithMaybeMatched f) #if __GLASGOW_HASKELL__ {-# INLINABLE differenceWithKey #-} #endif {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(m*log(n\/m + 1)), m <= n/. Intersection with a combining function. -- -- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA" intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c intersectionWith _f Tip _ = Tip intersectionWith _f _ Tip = Tip intersectionWith f (Bin _ k x1 l1 r1) t2 = case mb of Just x2 -> let !x1' = f x1 x2 in link k x1' l1l2 r1r2 Nothing -> link2 l1l2 r1r2 where !(l2, mb, r2) = splitLookup k t2 !l1l2 = intersectionWith f l1 l2 !r1r2 = intersectionWith f r1 r2 #if __GLASGOW_HASKELL__ {-# INLINABLE intersectionWith #-} #endif -- | /O(m*log(n\/m + 1)), m <= n/. Intersection with a combining function. -- -- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar -- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A" intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c intersectionWithKey _f Tip _ = Tip intersectionWithKey _f _ Tip = Tip intersectionWithKey f (Bin _ k x1 l1 r1) t2 = case mb of Just x2 -> let !x1' = f k x1 x2 in link k x1' l1l2 r1r2 Nothing -> link2 l1l2 r1r2 where !(l2, mb, r2) = splitLookup k t2 !l1l2 = intersectionWithKey f l1 l2 !r1r2 = intersectionWithKey f r1 r2 #if __GLASGOW_HASKELL__ {-# INLINABLE intersectionWithKey #-} #endif -- | Map covariantly over a @'WhenMissing' f k x@. mapWhenMissing :: Functor f => (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b mapWhenMissing f q = WhenMissing { missingSubtree = fmap (map f) . missingSubtree q , missingKey = \k x -> fmap (forceMaybe . fmap f) $ missingKey q k x} -- | Map covariantly over a @'WhenMatched' f k x y@. mapWhenMatched :: Functor f => (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b mapWhenMatched f q = WhenMatched { matchedKey = \k x y -> fmap (forceMaybe . fmap f) $ runWhenMatched q k x y } -- | When a key is found in both maps, apply a function to the -- key and values and maybe use the result in the merged map. -- -- @ -- zipWithMaybeMatched :: (k -> x -> y -> Maybe z) -- -> SimpleWhenMatched k x y z -- @ zipWithMaybeMatched :: Applicative f => (k -> x -> y -> Maybe z) -> WhenMatched f k x y z zipWithMaybeMatched f = WhenMatched $ \k x y -> pure $! forceMaybe $! f k x y {-# INLINE zipWithMaybeMatched #-} -- | When a key is found in both maps, apply a function to the -- key and values, perform the resulting action, and maybe use -- the result in the merged map. -- -- This is the fundamental 'WhenMatched' tactic. zipWithMaybeAMatched :: Applicative f => (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z zipWithMaybeAMatched f = WhenMatched $ \ k x y -> forceMaybe <$> f k x y {-# INLINE zipWithMaybeAMatched #-} -- | When a key is found in both maps, apply a function to the -- key and values to produce an action and use its result in the merged map. zipWithAMatched :: Applicative f => (k -> x -> y -> f z) -> WhenMatched f k x y z zipWithAMatched f = WhenMatched $ \ k x y -> (Just $!) <$> f k x y {-# INLINE zipWithAMatched #-} -- | When a key is found in both maps, apply a function to the -- key and values and use the result in the merged map. -- -- @ -- zipWithMatched :: (k -> x -> y -> z) -- -> SimpleWhenMatched k x y z -- @ zipWithMatched :: Applicative f => (k -> x -> y -> z) -> WhenMatched f k x y z zipWithMatched f = WhenMatched $ \k x y -> pure $! Just $! f k x y {-# INLINE zipWithMatched #-} -- | Map over the entries whose keys are missing from the other map, -- optionally removing some. This is the most powerful 'SimpleWhenMissing' -- tactic, but others are usually more efficient. -- -- @ -- mapMaybeMissing :: (k -> x -> Maybe y) -> SimpleWhenMissing k x y -- @ -- -- prop> mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x)) -- -- but @mapMaybeMissing@ uses fewer unnecessary 'Applicative' operations. mapMaybeMissing :: Applicative f => (k -> x -> Maybe y) -> WhenMissing f k x y mapMaybeMissing f = WhenMissing { missingSubtree = \m -> pure $! mapMaybeWithKey f m , missingKey = \k x -> pure $! forceMaybe $! f k x } {-# INLINE mapMaybeMissing #-} -- | Map over the entries whose keys are missing from the other map. -- -- @ -- mapMissing :: (k -> x -> y) -> SimpleWhenMissing k x y -- @ -- -- prop> mapMissing f = mapMaybeMissing (\k x -> Just $ f k x) -- -- but @mapMissing@ is somewhat faster. mapMissing :: Applicative f => (k -> x -> y) -> WhenMissing f k x y mapMissing f = WhenMissing { missingSubtree = \m -> pure $! mapWithKey f m , missingKey = \k x -> pure $! Just $! f k x } {-# INLINE mapMissing #-} -- | Traverse over the entries whose keys are missing from the other map, -- optionally producing values to put in the result. -- This is the most powerful 'WhenMissing' tactic, but others are usually -- more efficient. traverseMaybeMissing :: Applicative f => (k -> x -> f (Maybe y)) -> WhenMissing f k x y traverseMaybeMissing f = WhenMissing { missingSubtree = traverseMaybeWithKey f , missingKey = \k x -> forceMaybe <$> f k x } {-# INLINE traverseMaybeMissing #-} -- | Traverse over the entries whose keys are missing from the other map. traverseMissing :: Applicative f => (k -> x -> f y) -> WhenMissing f k x y traverseMissing f = WhenMissing { missingSubtree = traverseWithKey f , missingKey = \k x -> (Just $!) <$> f k x } {-# INLINE traverseMissing #-} forceMaybe :: Maybe a -> Maybe a forceMaybe Nothing = Nothing forceMaybe m@(Just !_) = m {-# INLINE forceMaybe #-} {-------------------------------------------------------------------- MergeWithKey --------------------------------------------------------------------} -- | /O(n+m)/. An unsafe universal combining function. -- -- WARNING: This function can produce corrupt maps and its results -- may depend on the internal structures of its inputs. Users should -- prefer 'Data.Map.Merge.Strict.merge' or -- 'Data.Map.Merge.Strict.mergeA'. -- -- When 'mergeWithKey' is given three arguments, it is inlined to the call -- site. You should therefore use 'mergeWithKey' only to define custom -- combining functions. For example, you could define 'unionWithKey', -- 'differenceWithKey' and 'intersectionWithKey' as -- -- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2 -- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2 -- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2 -- -- When calling @'mergeWithKey' combine only1 only2@, a function combining two -- 'Map's is created, such that -- -- * if a key is present in both maps, it is passed with both corresponding -- values to the @combine@ function. Depending on the result, the key is either -- present in the result with specified value, or is left out; -- -- * a nonempty subtree present only in the first map is passed to @only1@ and -- the output is added to the result; -- -- * a nonempty subtree present only in the second map is passed to @only2@ and -- the output is added to the result. -- -- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/. -- The values can be modified arbitrarily. Most common variants of @only1@ and -- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or -- @'filterWithKey' f@ could be used for any @f@. mergeWithKey :: Ord k => (k -> a -> b -> Maybe c) -> (Map k a -> Map k c) -> (Map k b -> Map k c) -> Map k a -> Map k b -> Map k c mergeWithKey f g1 g2 = go where go Tip t2 = g2 t2 go t1 Tip = g1 t1 go (Bin _ kx x l1 r1) t2 = case found of Nothing -> case g1 (singleton kx x) of Tip -> link2 l' r' (Bin _ _ x' Tip Tip) -> link kx x' l' r' _ -> error "mergeWithKey: Given function only1 does not fulfill required conditions (see documentation)" Just x2 -> case f kx x x2 of Nothing -> link2 l' r' Just x' -> link kx x' l' r' where (l2, found, r2) = splitLookup kx t2 l' = go l1 l2 r' = go r1 r2 {-# INLINE mergeWithKey #-} {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Map values and collect the 'Just' results. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a" mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b mapMaybe f = mapMaybeWithKey (\_ x -> f x) -- | /O(n)/. Map keys\/values and collect the 'Just' results. -- -- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing -- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3" mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b mapMaybeWithKey _ Tip = Tip mapMaybeWithKey f (Bin _ kx x l r) = case f kx x of Just y -> y `seq` link kx y (mapMaybeWithKey f l) (mapMaybeWithKey f r) Nothing -> link2 (mapMaybeWithKey f l) (mapMaybeWithKey f r) -- | /O(n)/. Traverse keys\/values and collect the 'Just' results. -- -- @since 0.5.8 traverseMaybeWithKey :: Applicative f => (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b) traverseMaybeWithKey = go where go _ Tip = pure Tip go f (Bin _ kx x Tip Tip) = maybe Tip (\ !x' -> Bin 1 kx x' Tip Tip) <$> f kx x go f (Bin _ kx x l r) = liftA3 combine (go f l) (f kx x) (go f r) where combine !l' mx !r' = case mx of Nothing -> link2 l' r' Just !x' -> link kx x' l' r' -- | /O(n)/. Map values and separate the 'Left' and 'Right' results. -- -- > let f a = if a < "c" then Left a else Right a -- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) -- > -- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c) mapEither f m = mapEitherWithKey (\_ x -> f x) m -- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results. -- -- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) -- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) -- > -- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")]) mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c) mapEitherWithKey f0 t0 = toPair $ go f0 t0 where go _ Tip = (Tip :*: Tip) go f (Bin _ kx x l r) = case f kx x of Left y -> y `seq` (link kx y l1 r1 :*: link2 l2 r2) Right z -> z `seq` (link2 l1 r1 :*: link kx z l2 r2) where (l1 :*: l2) = go f l (r1 :*: r2) = go f r {-------------------------------------------------------------------- Mapping --------------------------------------------------------------------} -- | /O(n)/. Map a function over all values in the map. -- -- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")] map :: (a -> b) -> Map k a -> Map k b map f = go where go Tip = Tip go (Bin sx kx x l r) = let !x' = f x in Bin sx kx x' (go l) (go r) -- We use `go` to let `map` inline. This is important if `f` is a constant -- function. #ifdef __GLASGOW_HASKELL__ {-# NOINLINE [1] map #-} {-# RULES "map/map" forall f g xs . map f (map g xs) = map (\x -> f $! g x) xs "map/mapL" forall f g xs . map f (L.map g xs) = map (\x -> f (g x)) xs #-} #endif -- | /O(n)/. Map a function over all values in the map. -- -- > let f key x = (show key) ++ ":" ++ x -- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")] mapWithKey :: (k -> a -> b) -> Map k a -> Map k b mapWithKey _ Tip = Tip mapWithKey f (Bin sx kx x l r) = let x' = f kx x in x' `seq` Bin sx kx x' (mapWithKey f l) (mapWithKey f r) #ifdef __GLASGOW_HASKELL__ {-# NOINLINE [1] mapWithKey #-} {-# RULES "mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) = mapWithKey (\k a -> f k $! g k a) xs "mapWithKey/mapWithKeyL" forall f g xs . mapWithKey f (L.mapWithKey g xs) = mapWithKey (\k a -> f k (g k a)) xs "mapWithKey/map" forall f g xs . mapWithKey f (map g xs) = mapWithKey (\k a -> f k $! g a) xs "mapWithKey/mapL" forall f g xs . mapWithKey f (L.map g xs) = mapWithKey (\k a -> f k (g a)) xs "map/mapWithKey" forall f g xs . map f (mapWithKey g xs) = mapWithKey (\k a -> f $! g k a) xs "map/mapWithKeyL" forall f g xs . map f (L.mapWithKey g xs) = mapWithKey (\k a -> f (g k a)) xs #-} #endif -- | /O(n)/. -- @'traverseWithKey' f m == 'fromList' <$> 'traverse' (\(k, v) -> (\v' -> v' \`seq\` (k,v')) <$> f k v) ('toList' m)@ -- That is, it behaves much like a regular 'traverse' except that the traversing -- function also has access to the key associated with a value and the values are -- forced before they are installed in the result map. -- -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b) traverseWithKey f = go where go Tip = pure Tip go (Bin 1 k v _ _) = (\ !v' -> Bin 1 k v' Tip Tip) <$> f k v go (Bin s k v l r) = liftA3 (\ l' !v' r' -> Bin s k v' l' r') (go l) (f k v) (go r) {-# INLINE traverseWithKey #-} -- | /O(n)/. The function 'mapAccum' threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a b = (a ++ b, b ++ "X") -- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")]) mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccum f a m = mapAccumWithKey (\a' _ x' -> f a' x') a m -- | /O(n)/. The function 'mapAccumWithKey' threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") -- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")]) mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumWithKey f a t = mapAccumL f a t -- | /O(n)/. The function 'mapAccumL' threads an accumulating -- argument through the map in ascending order of keys. mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumL _ a Tip = (a,Tip) mapAccumL f a (Bin sx kx x l r) = let (a1,l') = mapAccumL f a l (a2,x') = f a1 kx x (a3,r') = mapAccumL f a2 r in x' `seq` (a3,Bin sx kx x' l' r') -- | /O(n)/. The function 'mapAccumRWithKey' threads an accumulating -- argument through the map in descending order of keys. mapAccumRWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumRWithKey _ a Tip = (a,Tip) mapAccumRWithKey f a (Bin sx kx x l r) = let (a1,r') = mapAccumRWithKey f a r (a2,x') = f a1 kx x (a3,l') = mapAccumRWithKey f a2 l in x' `seq` (a3,Bin sx kx x' l' r') -- | /O(n*log n)/. -- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the associated values will be -- combined using @c@. The value at the greater of the two original keys -- is used as the first argument to @c@. -- -- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" -- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab" mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1->k2) -> Map k1 a -> Map k2 a mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) [] #if __GLASGOW_HASKELL__ {-# INLINABLE mapKeysWith #-} #endif {-------------------------------------------------------------------- Conversions --------------------------------------------------------------------} -- | /O(n)/. Build a map from a set of keys and a function which for each key -- computes its value. -- -- > fromSet (\k -> replicate k 'a') (Data.Set.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")] -- > fromSet undefined Data.Set.empty == empty fromSet :: (k -> a) -> Set.Set k -> Map k a fromSet _ Set.Tip = Tip fromSet f (Set.Bin sz x l r) = case f x of v -> v `seq` Bin sz x v (fromSet f l) (fromSet f r) {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} -- | /O(n*log n)/. Build a map from a list of key\/value pairs. See also 'fromAscList'. -- If the list contains more than one value for the same key, the last value -- for the key is retained. -- -- If the keys of the list are ordered, linear-time implementation is used, -- with the performance equal to 'fromDistinctAscList'. -- -- > fromList [] == empty -- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] -- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")] -- For some reason, when 'singleton' is used in fromList or in -- create, it is not inlined, so we inline it manually. fromList :: Ord k => [(k,a)] -> Map k a fromList [] = Tip fromList [(kx, x)] = x `seq` Bin 1 kx x Tip Tip fromList ((kx0, x0) : xs0) | not_ordered kx0 xs0 = x0 `seq` fromList' (Bin 1 kx0 x0 Tip Tip) xs0 | otherwise = x0 `seq` go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0 where not_ordered _ [] = False not_ordered kx ((ky,_) : _) = kx >= ky {-# INLINE not_ordered #-} fromList' t0 xs = Foldable.foldl' ins t0 xs where ins t (k,x) = insert k x t go !_ t [] = t go _ t [(kx, x)] = x `seq` insertMax kx x t go s l xs@((kx, x) : xss) | not_ordered kx xss = fromList' l xs | otherwise = case create s xss of (r, ys, []) -> x `seq` go (s `shiftL` 1) (link kx x l r) ys (r, _, ys) -> x `seq` fromList' (link kx x l r) ys -- The create is returning a triple (tree, xs, ys). Both xs and ys -- represent not yet processed elements and only one of them can be nonempty. -- If ys is nonempty, the keys in ys are not ordered with respect to tree -- and must be inserted using fromList'. Otherwise the keys have been -- ordered so far. create !_ [] = (Tip, [], []) create s xs@(xp : xss) | s == 1 = case xp of (kx, x) | not_ordered kx xss -> x `seq` (Bin 1 kx x Tip Tip, [], xss) | otherwise -> x `seq` (Bin 1 kx x Tip Tip, xss, []) | otherwise = case create (s `shiftR` 1) xs of res@(_, [], _) -> res (l, [(ky, y)], zs) -> y `seq` (insertMax ky y l, [], zs) (l, ys@((ky, y):yss), _) | not_ordered ky yss -> (l, [], ys) | otherwise -> case create (s `shiftR` 1) yss of (r, zs, ws) -> y `seq` (link ky y l r, zs, ws) #if __GLASGOW_HASKELL__ {-# INLINABLE fromList #-} #endif -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'. -- -- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")] -- > fromListWith (++) [] == empty fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a fromListWith f xs = fromListWithKey (\_ x y -> f x y) xs #if __GLASGOW_HASKELL__ {-# INLINABLE fromListWith #-} #endif -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWithKey'. -- -- > let f k a1 a2 = (show k) ++ a1 ++ a2 -- > fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")] -- > fromListWithKey f [] == empty fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromListWithKey f xs = Foldable.foldl' ins empty xs where ins t (k,x) = insertWithKey f k x t #if __GLASGOW_HASKELL__ {-# INLINABLE fromListWithKey #-} #endif {-------------------------------------------------------------------- Building trees from ascending/descending lists can be done in linear time. Note that if [xs] is ascending then: fromAscList xs == fromList xs fromAscListWith f xs == fromListWith f xs If [xs] is descending then: fromDescList xs == fromList xs fromDescListWith f xs == fromListWith f xs --------------------------------------------------------------------} -- | /O(n)/. Build a map from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] -- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")] -- > valid (fromAscList [(3,"b"), (5,"a"), (5,"b")]) == True -- > valid (fromAscList [(5,"a"), (3,"b"), (5,"b")]) == False fromAscList :: Eq k => [(k,a)] -> Map k a fromAscList xs = fromAscListWithKey (\_ x _ -> x) xs #if __GLASGOW_HASKELL__ {-# INLINABLE fromAscList #-} #endif -- | /O(n)/. Build a map from a descending list in linear time. -- /The precondition (input list is descending) is not checked./ -- -- > fromDescList [(5,"a"), (3,"b")] == fromList [(3, "b"), (5, "a")] -- > fromDescList [(5,"a"), (5,"b"), (3,"a")] == fromList [(3, "b"), (5, "b")] -- > valid (fromDescList [(5,"a"), (5,"b"), (3,"b")]) == True -- > valid (fromDescList [(5,"a"), (3,"b"), (5,"b")]) == False fromDescList :: Eq k => [(k,a)] -> Map k a fromDescList xs = fromDescListWithKey (\_ x _ -> x) xs #if __GLASGOW_HASKELL__ {-# INLINABLE fromDescList #-} #endif -- | /O(n)/. Build a map from an ascending list in linear time with a combining function for equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")] -- > valid (fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")]) == True -- > valid (fromAscListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a fromAscListWith f xs = fromAscListWithKey (\_ x y -> f x y) xs #if __GLASGOW_HASKELL__ {-# INLINABLE fromAscListWith #-} #endif -- | /O(n)/. Build a map from a descending list in linear time with a combining function for equal keys. -- /The precondition (input list is descending) is not checked./ -- -- > fromDescListWith (++) [(5,"a"), (5,"b"), (3,"b")] == fromList [(3, "b"), (5, "ba")] -- > valid (fromDescListWith (++) [(5,"a"), (5,"b"), (3,"b")]) == True -- > valid (fromDescListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False fromDescListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a fromDescListWith f xs = fromDescListWithKey (\_ x y -> f x y) xs #if __GLASGOW_HASKELL__ {-# INLINABLE fromDescListWith #-} #endif -- | /O(n)/. Build a map from an ascending list in linear time with a -- combining function for equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2 -- > fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")] == fromList [(3, "b"), (5, "5:b5:ba")] -- > valid (fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")]) == True -- > valid (fromAscListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromAscListWithKey f xs = fromDistinctAscList (combineEq f xs) where -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs] combineEq _ xs' = case xs' of [] -> [] [x] -> [x] (x:xx) -> combineEq' x xx combineEq' z [] = [z] combineEq' z@(kz,zz) (x@(kx,xx):xs') | kx==kz = let yy = f kx xx zz in yy `seq` combineEq' (kx,yy) xs' | otherwise = z:combineEq' x xs' #if __GLASGOW_HASKELL__ {-# INLINABLE fromAscListWithKey #-} #endif -- | /O(n)/. Build a map from a descending list in linear time with a -- combining function for equal keys. -- /The precondition (input list is descending) is not checked./ -- -- > let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2 -- > fromDescListWithKey f [(5,"a"), (5,"b"), (5,"b"), (3,"b")] == fromList [(3, "b"), (5, "5:b5:ba")] -- > valid (fromDescListWithKey f [(5,"a"), (5,"b"), (5,"b"), (3,"b")]) == True -- > valid (fromDescListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False fromDescListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromDescListWithKey f xs = fromDistinctDescList (combineEq f xs) where -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs] combineEq _ xs' = case xs' of [] -> [] [x] -> [x] (x:xx) -> combineEq' x xx combineEq' z [] = [z] combineEq' z@(kz,zz) (x@(kx,xx):xs') | kx==kz = let yy = f kx xx zz in yy `seq` combineEq' (kx,yy) xs' | otherwise = z:combineEq' x xs' #if __GLASGOW_HASKELL__ {-# INLINABLE fromDescListWithKey #-} #endif -- | /O(n)/. Build a map from an ascending list of distinct elements in linear time. -- /The precondition is not checked./ -- -- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] -- > valid (fromDistinctAscList [(3,"b"), (5,"a")]) == True -- > valid (fromDistinctAscList [(3,"b"), (5,"a"), (5,"b")]) == False -- For some reason, when 'singleton' is used in fromDistinctAscList or in -- create, it is not inlined, so we inline it manually. fromDistinctAscList :: [(k,a)] -> Map k a fromDistinctAscList [] = Tip fromDistinctAscList ((kx0, x0) : xs0) = x0 `seq` go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0 where go !_ t [] = t go s l ((kx, x) : xs) = case create s xs of (r :*: ys) -> x `seq` let !t' = link kx x l r in go (s `shiftL` 1) t' ys create !_ [] = (Tip :*: []) create s xs@(x' : xs') | s == 1 = case x' of (kx, x) -> x `seq` (Bin 1 kx x Tip Tip :*: xs') | otherwise = case create (s `shiftR` 1) xs of res@(_ :*: []) -> res (l :*: (ky, y):ys) -> case create (s `shiftR` 1) ys of (r :*: zs) -> y `seq` (link ky y l r :*: zs) -- | /O(n)/. Build a map from a descending list of distinct elements in linear time. -- /The precondition is not checked./ -- -- > fromDistinctDescList [(5,"a"), (3,"b")] == fromList [(3, "b"), (5, "a")] -- > valid (fromDistinctDescList [(5,"a"), (3,"b")]) == True -- > valid (fromDistinctDescList [(5,"a"), (3,"b"), (3,"a")]) == False -- For some reason, when 'singleton' is used in fromDistinctDescList or in -- create, it is not inlined, so we inline it manually. fromDistinctDescList :: [(k,a)] -> Map k a fromDistinctDescList [] = Tip fromDistinctDescList ((kx0, x0) : xs0) = x0 `seq` go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0 where go !_ t [] = t go s r ((kx, x) : xs) = case create s xs of (l :*: ys) -> x `seq` let !t' = link kx x l r in go (s `shiftL` 1) t' ys create !_ [] = (Tip :*: []) create s xs@(x' : xs') | s == 1 = case x' of (kx, x) -> x `seq` (Bin 1 kx x Tip Tip :*: xs') | otherwise = case create (s `shiftR` 1) xs of res@(_ :*: []) -> res (r :*: (ky, y):ys) -> case create (s `shiftR` 1) ys of (l :*: zs) -> y `seq` (link ky y l r :*: zs)