{-# LANGUAGE Rank2Types
           , MultiParamTypeClasses
           , FunctionalDependencies
           , TypeOperators
           , UndecidableInstances #-}
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE EmptyCase #-}
#endif
module Data.Functor.Adjunction
  ( Adjunction(..)
  , adjuncted
  , tabulateAdjunction
  , indexAdjunction
  , zapWithAdjunction
  , zipR, unzipR
  , unabsurdL, absurdL
  , cozipL, uncozipL
  , extractL, duplicateL
  , splitL, unsplitL
  ) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import Control.Arrow ((&&&), (|||))
import Control.Monad.Free
#if __GLASGOW_HASKELL__ < 707
import Control.Monad.Instances ()
#endif
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Reader
import Control.Monad.Trans.Writer
import Control.Comonad
import Control.Comonad.Cofree
import Control.Comonad.Trans.Env
import Control.Comonad.Trans.Traced
import Data.Functor.Identity
import Data.Functor.Compose
import Data.Functor.Product
import Data.Functor.Rep
import Data.Functor.Sum
import Data.Profunctor
import Data.Void
import GHC.Generics
class (Functor f, Representable u) =>
      Adjunction f u | f -> u, u -> f where
#if __GLASGOW_HASKELL__ >= 708
  {-# MINIMAL (unit, counit) | (leftAdjunct, rightAdjunct) #-}
#endif
  unit         :: a -> u (f a)
  counit       :: f (u a) -> a
  leftAdjunct  :: (f a -> b) -> a -> u b
  rightAdjunct :: (a -> u b) -> f a -> b
  unit           = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall a. a -> a
id
  counit         = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall a. a -> a
id
  leftAdjunct f a -> b
f  = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f a -> b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a.
Adjunction f u =>
a -> u (f a)
unit
  rightAdjunct a -> u b
f = forall (f :: * -> *) (u :: * -> *) a.
Adjunction f u =>
f (u a) -> a
counit forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> u b
f
adjuncted :: (Adjunction f u, Profunctor p, Functor g)
          => p (a -> u b) (g (c -> u d)) -> p (f a -> b) (g (f c -> d))
adjuncted :: forall (f :: * -> *) (u :: * -> *) (p :: * -> * -> *) (g :: * -> *)
       a b c d.
(Adjunction f u, Profunctor p, Functor g) =>
p (a -> u b) (g (c -> u d)) -> p (f a -> b) (g (f c -> d))
adjuncted = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct)
{-# INLINE adjuncted #-}
tabulateAdjunction :: Adjunction f u => (f () -> b) -> u b
tabulateAdjunction :: forall (f :: * -> *) (u :: * -> *) b.
Adjunction f u =>
(f () -> b) -> u b
tabulateAdjunction f () -> b
f = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct f () -> b
f ()
indexAdjunction :: Adjunction f u => u b -> f a -> b
indexAdjunction :: forall (f :: * -> *) (u :: * -> *) b a.
Adjunction f u =>
u b -> f a -> b
indexAdjunction = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. a -> b -> a
const
zapWithAdjunction :: Adjunction f u => (a -> b -> c) -> u a -> f b -> c
zapWithAdjunction :: forall (f :: * -> *) (u :: * -> *) a b c.
Adjunction f u =>
(a -> b -> c) -> u a -> f b -> c
zapWithAdjunction a -> b -> c
f u a
ua = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (\b
b -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b c. (a -> b -> c) -> b -> a -> c
flip a -> b -> c
f b
b) u a
ua)
splitL :: Adjunction f u => f a -> (a, f ())
splitL :: forall (f :: * -> *) (u :: * -> *) a.
Adjunction f u =>
f a -> (a, f ())
splitL = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct () forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,))
unsplitL :: Functor f => a -> f () -> f a
unsplitL :: forall (f :: * -> *) a. Functor f => a -> f () -> f a
unsplitL = forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$)
extractL :: Adjunction f u => f a -> a
 = forall a b. (a, b) -> a
fst forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a.
Adjunction f u =>
f a -> (a, f ())
splitL
duplicateL :: Adjunction f u => f a -> f (f a)
duplicateL :: forall (f :: * -> *) (u :: * -> *) a.
Adjunction f u =>
f a -> f (f a)
duplicateL f a
as = f a
as forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ f a
as
zipR :: Adjunction f u => (u a, u b) -> u (a, b)
zipR :: forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(u a, u b) -> u (a, b)
zipR = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall a b. (a, b) -> a
fst forall (a :: * -> * -> *) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall a b. (a, b) -> b
snd)
unzipR :: Functor u => u (a, b) -> (u a, u b)
unzipR :: forall (u :: * -> *) a b. Functor u => u (a, b) -> (u a, u b)
unzipR = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst forall (a :: * -> * -> *) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> b
snd
absurdL :: Void -> f Void
absurdL :: forall (f :: * -> *). Void -> f Void
absurdL = forall a. Void -> a
absurd
unabsurdL :: Adjunction f u => f Void -> Void
unabsurdL :: forall (f :: * -> *) (u :: * -> *).
Adjunction f u =>
f Void -> Void
unabsurdL = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall a. Void -> a
absurd
cozipL :: Adjunction f u => f (Either a b) -> Either (f a) (f b)
cozipL :: forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
f (Either a b) -> Either (f a) (f b)
cozipL = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall a b. a -> Either a b
Left forall (a :: * -> * -> *) b d c.
ArrowChoice a =>
a b d -> a c d -> a (Either b c) d
||| forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall a b. b -> Either a b
Right)
uncozipL :: Functor f => Either (f a) (f b) -> f (Either a b)
uncozipL :: forall (f :: * -> *) a b.
Functor f =>
Either (f a) (f b) -> f (Either a b)
uncozipL = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. a -> Either a b
Left forall (a :: * -> * -> *) b d c.
ArrowChoice a =>
a b d -> a c d -> a (Either b c) d
||| forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. b -> Either a b
Right
instance Adjunction ((,) e) ((->) e) where
  leftAdjunct :: forall a b. ((e, a) -> b) -> a -> e -> b
leftAdjunct (e, a) -> b
f a
a e
e      = (e, a) -> b
f (e
e, a
a)
  rightAdjunct :: forall a b. (a -> e -> b) -> (e, a) -> b
rightAdjunct a -> e -> b
f ~(e
e, a
a) = a -> e -> b
f a
a e
e
instance Adjunction Identity Identity where
  leftAdjunct :: forall a b. (Identity a -> b) -> a -> Identity b
leftAdjunct Identity a -> b
f  = forall a. a -> Identity a
Identity forall b c a. (b -> c) -> (a -> b) -> a -> c
. Identity a -> b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Identity a
Identity
  rightAdjunct :: forall a b. (a -> Identity b) -> Identity a -> b
rightAdjunct a -> Identity b
f = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Identity b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Identity a -> a
runIdentity
instance Adjunction f g =>
         Adjunction (IdentityT f) (IdentityT g) where
  unit :: forall a. a -> IdentityT g (IdentityT f a)
unit   = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT
  counit :: forall a. IdentityT f (IdentityT g a) -> a
counit = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall {k} (f :: k -> *) (a :: k). IdentityT f a -> f a
runIdentityT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} (f :: k -> *) (a :: k). IdentityT f a -> f a
runIdentityT
instance Adjunction w m =>
         Adjunction (EnvT e w) (ReaderT e m) where
  unit :: forall a. a -> ReaderT e m (EnvT e w a)
unit              = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e (w :: * -> *) a. e -> w a -> EnvT e w a
EnvT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct
  counit :: forall a. EnvT e w (ReaderT e m a) -> a
counit (EnvT e
e w (ReaderT e m a)
w) = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT e
e) w (ReaderT e m a)
w
instance Adjunction m w =>
         Adjunction (WriterT s m) (TracedT s w) where
  unit :: forall a. a -> TracedT s w (WriterT s m a)
unit   = forall m (w :: * -> *) a. w (m -> a) -> TracedT m w a
TracedT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct (\m a
ma s
s -> forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
WriterT (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\a
a -> (a
a, s
s)) m a
ma))
  counit :: forall a. WriterT s m (TracedT s w a) -> a
counit = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (\(TracedT s w a
t, s
s) -> (forall a b. (a -> b) -> a -> b
$ s
s) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall m (w :: * -> *) a. TracedT m w a -> w (m -> a)
runTracedT TracedT s w a
t) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT
instance (Adjunction f g, Adjunction f' g') =>
         Adjunction (Compose f' f) (Compose g g') where
  unit :: forall a. a -> Compose g g' (Compose f' f a)
unit   = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose)
  counit :: forall a. Compose f' f (Compose g g' a) -> a
counit = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
instance (Adjunction f g, Adjunction f' g') =>
         Adjunction (Sum f f') (Product g g') where
  unit :: forall a. a -> Product g g' (Sum f f' a)
unit a
a = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall {k} (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL a
a) (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall {k} (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR a
a)
  counit :: forall a. Sum f f' (Product g g' a) -> a
counit (InL f (Product g g' a)
l) = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (\(Pair g a
x g' a
_) -> g a
x) f (Product g g' a)
l
  counit (InR f' (Product g g' a)
r) = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (\(Pair g a
_ g' a
x) -> g' a
x) f' (Product g g' a)
r
instance Adjunction f u =>
         Adjunction (Free f) (Cofree u) where
  unit :: forall a. a -> Cofree u (Free f a)
unit a
a = forall (m :: * -> *) a. Monad m => a -> m a
return a
a forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
:< forall (f :: * -> *) (u :: * -> *) b.
Adjunction f u =>
(f () -> b) -> u b
tabulateAdjunction (\f ()
k -> forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct (forall (f :: * -> *) (m :: * -> *) a.
MonadFree f m =>
f (m a) -> m a
wrap forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (f :: * -> *) a. Functor f => a -> f () -> f a
unsplitL f ()
k) a
a)
  counit :: forall a. Free f (Cofree u a) -> a
counit (Pure Cofree u a
a) = forall (w :: * -> *) a. Comonad w => w a -> a
extract Cofree u a
a
  counit (Free f (Free f (Cofree u a))
k) = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (f :: * -> *) (u :: * -> *) b a.
Adjunction f u =>
u b -> f a -> b
indexAdjunction f (Free f (Cofree u a))
k forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (w :: * -> *) a.
ComonadCofree f w =>
w a -> f (w a)
unwrap) (forall (f :: * -> *) (u :: * -> *) a. Adjunction f u => f a -> a
extractL f (Free f (Cofree u a))
k)
instance Adjunction V1 U1 where
  unit :: forall a. a -> U1 (V1 a)
unit a
_ = forall k (p :: k). U1 p
U1
  counit :: forall a. V1 (U1 a) -> a
counit = forall a b. V1 a -> b
absurdV1
absurdV1 :: V1 a -> b
#if __GLASGOW_HASKELL__ >= 708
absurdV1 :: forall a b. V1 a -> b
absurdV1 V1 a
x = case V1 a
x of {}
#else
absurdV1 x = x `seq` undefined
#endif
instance Adjunction Par1 Par1 where
  leftAdjunct :: forall a b. (Par1 a -> b) -> a -> Par1 b
leftAdjunct Par1 a -> b
f = forall p. p -> Par1 p
Par1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Par1 a -> b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall p. p -> Par1 p
Par1
  rightAdjunct :: forall a b. (a -> Par1 b) -> Par1 a -> b
rightAdjunct a -> Par1 b
f = forall p. Par1 p -> p
unPar1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Par1 b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall p. Par1 p -> p
unPar1
instance Adjunction f g => Adjunction (Rec1 f) (Rec1 g) where
  unit :: forall a. a -> Rec1 g (Rec1 f a)
unit   = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1
  counit :: forall a. Rec1 f (Rec1 g a) -> a
counit = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall k (f :: k -> *) (p :: k). Rec1 f p -> f p
unRec1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (f :: k -> *) (p :: k). Rec1 f p -> f p
unRec1
instance (Adjunction f g, Adjunction f' g') => Adjunction (f' :.: f) (g :.: g') where
  unit :: forall a. a -> (:.:) g g' ((:.:) f' f a)
unit   = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1)
  counit :: forall a. (:.:) f' f ((:.:) g g' a) -> a
counit = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
(:.:) f g p -> f (g p)
unComp1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
(:.:) f g p -> f (g p)
unComp1
instance (Adjunction f g, Adjunction f' g') => Adjunction (f :+: f') (g :*: g') where
  unit :: forall a. a -> (:*:) g g' ((:+:) f f' a)
unit a
a = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 a
a forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 a
a
  counit :: forall a. (:+:) f f' ((:*:) g g' a) -> a
counit (L1 f ((:*:) g g' a)
l) = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (\(g a
x :*: g' a
_) -> g a
x) f ((:*:) g g' a)
l
  counit (R1 f' ((:*:) g g' a)
r) = forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct (\(g a
_ :*: g' a
x) -> g' a
x) f' ((:*:) g g' a)
r