module Algebra.Graph.Relation.Preorder (
PreorderRelation, fromRelation, toRelation
) where
import Algebra.Graph.Relation
import Control.DeepSeq
import Data.String
import qualified Algebra.Graph.Class as C
newtype PreorderRelation a = PreorderRelation { forall a. PreorderRelation a -> Relation a
fromPreorder :: Relation a }
deriving (String -> PreorderRelation a
forall a. IsString a => String -> PreorderRelation a
forall a. (String -> a) -> IsString a
fromString :: String -> PreorderRelation a
$cfromString :: forall a. IsString a => String -> PreorderRelation a
IsString, PreorderRelation a -> ()
forall a. NFData a => PreorderRelation a -> ()
forall a. (a -> ()) -> NFData a
rnf :: PreorderRelation a -> ()
$crnf :: forall a. NFData a => PreorderRelation a -> ()
NFData, Integer -> PreorderRelation a
PreorderRelation a -> PreorderRelation a
PreorderRelation a -> PreorderRelation a -> PreorderRelation a
forall a. (Ord a, Num a) => Integer -> PreorderRelation a
forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a
forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a -> PreorderRelation a
forall a.
(a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a)
-> (a -> a)
-> (a -> a)
-> (Integer -> a)
-> Num a
fromInteger :: Integer -> PreorderRelation a
$cfromInteger :: forall a. (Ord a, Num a) => Integer -> PreorderRelation a
signum :: PreorderRelation a -> PreorderRelation a
$csignum :: forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a
abs :: PreorderRelation a -> PreorderRelation a
$cabs :: forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a
negate :: PreorderRelation a -> PreorderRelation a
$cnegate :: forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a
* :: PreorderRelation a -> PreorderRelation a -> PreorderRelation a
$c* :: forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a -> PreorderRelation a
- :: PreorderRelation a -> PreorderRelation a -> PreorderRelation a
$c- :: forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a -> PreorderRelation a
+ :: PreorderRelation a -> PreorderRelation a -> PreorderRelation a
$c+ :: forall a.
(Ord a, Num a) =>
PreorderRelation a -> PreorderRelation a -> PreorderRelation a
Num)
instance (Ord a, Show a) => Show (PreorderRelation a) where
show :: PreorderRelation a -> String
show = forall a. Show a => a -> String
show forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => PreorderRelation a -> Relation a
toRelation
instance Ord a => Eq (PreorderRelation a) where
PreorderRelation a
x == :: PreorderRelation a -> PreorderRelation a -> Bool
== PreorderRelation a
y = forall a. Ord a => PreorderRelation a -> Relation a
toRelation PreorderRelation a
x forall a. Eq a => a -> a -> Bool
== forall a. Ord a => PreorderRelation a -> Relation a
toRelation PreorderRelation a
y
instance Ord a => Ord (PreorderRelation a) where
compare :: PreorderRelation a -> PreorderRelation a -> Ordering
compare PreorderRelation a
x PreorderRelation a
y = forall a. Ord a => a -> a -> Ordering
compare (forall a. Ord a => PreorderRelation a -> Relation a
toRelation PreorderRelation a
x) (forall a. Ord a => PreorderRelation a -> Relation a
toRelation PreorderRelation a
y)
instance Ord a => C.Graph (PreorderRelation a) where
type Vertex (PreorderRelation a) = a
empty :: PreorderRelation a
empty = forall a. Relation a -> PreorderRelation a
PreorderRelation forall a. Relation a
empty
vertex :: Vertex (PreorderRelation a) -> PreorderRelation a
vertex = forall a. Relation a -> PreorderRelation a
PreorderRelation forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Relation a
vertex
overlay :: PreorderRelation a -> PreorderRelation a -> PreorderRelation a
overlay PreorderRelation a
x PreorderRelation a
y = forall a. Relation a -> PreorderRelation a
PreorderRelation forall a b. (a -> b) -> a -> b
$ forall a. PreorderRelation a -> Relation a
fromPreorder PreorderRelation a
x forall a. Ord a => Relation a -> Relation a -> Relation a
`overlay` forall a. PreorderRelation a -> Relation a
fromPreorder PreorderRelation a
y
connect :: PreorderRelation a -> PreorderRelation a -> PreorderRelation a
connect PreorderRelation a
x PreorderRelation a
y = forall a. Relation a -> PreorderRelation a
PreorderRelation forall a b. (a -> b) -> a -> b
$ forall a. PreorderRelation a -> Relation a
fromPreorder PreorderRelation a
x forall a. Ord a => Relation a -> Relation a -> Relation a
`connect` forall a. PreorderRelation a -> Relation a
fromPreorder PreorderRelation a
y
instance Ord a => C.Reflexive (PreorderRelation a)
instance Ord a => C.Transitive (PreorderRelation a)
instance Ord a => C.Preorder (PreorderRelation a)
fromRelation :: Relation a -> PreorderRelation a
fromRelation :: forall a. Relation a -> PreorderRelation a
fromRelation = forall a. Relation a -> PreorderRelation a
PreorderRelation
toRelation :: Ord a => PreorderRelation a -> Relation a
toRelation :: forall a. Ord a => PreorderRelation a -> Relation a
toRelation = forall a. Ord a => Relation a -> Relation a
closure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. PreorderRelation a -> Relation a
fromPreorder