{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE NumDecimals #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
module Cardano.Binary.ToCBOR
( ToCBOR(..)
, withWordSize
, module E
, toCBORMaybe
, Range(..)
, szEval
, Size
, Case(..)
, caseValue
, LengthOf(..)
, SizeOverride(..)
, isTodo
, szCases
, szLazy
, szGreedy
, szForce
, szWithCtx
, szSimplify
, apMono
, szBounds
)
where
import Prelude hiding ((.))
import Codec.CBOR.Encoding as E
import Codec.CBOR.ByteArray.Sliced as BAS
import Control.Category (Category((.)))
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BS.Lazy
import qualified Data.ByteString.Short as SBS
import Data.ByteString.Short.Internal (ShortByteString (SBS))
import qualified Data.Primitive.ByteArray as Prim
import Data.Fixed (E12, Fixed(..), Nano, Pico, resolution)
#if MIN_VERSION_recursion_schemes(5,2,0)
import Data.Fix ( Fix(..) )
#else
import Data.Functor.Foldable (Fix(..))
#endif
import Data.Foldable (toList)
import Data.Functor.Foldable (cata, project)
import Data.Int (Int32, Int64)
import Data.List.NonEmpty (NonEmpty)
import qualified Data.Map as M
import Data.Ratio ( Ratio, denominator, numerator )
import qualified Data.Set as S
import Data.Tagged (Tagged(..))
import qualified Data.Text as Text
import Data.Text (Text)
import Data.Text.Lazy.Builder (Builder)
import Data.Time.Calendar.OrdinalDate ( toOrdinalDate )
import Data.Time.Clock (NominalDiffTime, UTCTime(..), diffTimeToPicoseconds)
import Data.Typeable ( Typeable, typeRep, TypeRep, Proxy(..) )
import qualified Data.Vector as Vector
import qualified Data.Vector.Generic as Vector.Generic
import Data.Void (Void, absurd)
import Data.Word ( Word8, Word16, Word32, Word64 )
import Foreign.Storable (sizeOf)
import Formatting (bprint, build, shown, stext)
import qualified Formatting.Buildable as B (Buildable(..))
import Numeric.Natural (Natural)
class Typeable a => ToCBOR a where
toCBOR :: a -> Encoding
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo
encodedListSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
encodedListSizeExpr = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
defaultEncodedListSizeExpr
newtype LengthOf xs = LengthOf xs
instance Typeable xs => ToCBOR (LengthOf xs) where
toCBOR :: LengthOf xs -> Encoding
toCBOR = forall a. HasCallStack => [Char] -> a
error [Char]
"The `LengthOf` type cannot be encoded!"
defaultEncodedListSizeExpr
:: forall a
. ToCBOR a
=> (forall t . ToCBOR t => Proxy t -> Size)
-> Proxy [a]
-> Size
defaultEncodedListSizeExpr :: forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
defaultEncodedListSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy [a]
_ =
Size
2 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf [a])) forall a. Num a => a -> a -> a
* forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
(.:) :: (c -> d) -> (a -> b -> c) -> (a -> b -> d)
c -> d
f .: :: forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: a -> b -> c
g = \a
x b
y -> c -> d
f (a -> b -> c
g a
x b
y)
type Size = Fix SizeF
data SizeF t
= AddF t t
| MulF t t
| SubF t t
| AbsF t
| NegF t
| SgnF t
| CasesF [Case t]
| ValueF Natural
| ApF Text (Natural -> Natural) t
| forall a. ToCBOR a => TodoF (forall x. ToCBOR x => Proxy x -> Size) (Proxy a)
instance Functor SizeF where
fmap :: forall a b. (a -> b) -> SizeF a -> SizeF b
fmap a -> b
f = \case
AddF a
x a
y -> forall t. t -> t -> SizeF t
AddF (a -> b
f a
x) (a -> b
f a
y)
MulF a
x a
y -> forall t. t -> t -> SizeF t
MulF (a -> b
f a
x) (a -> b
f a
y)
SubF a
x a
y -> forall t. t -> t -> SizeF t
SubF (a -> b
f a
x) (a -> b
f a
y)
AbsF a
x -> forall t. t -> SizeF t
AbsF (a -> b
f a
x)
NegF a
x -> forall t. t -> SizeF t
NegF (a -> b
f a
x)
SgnF a
x -> forall t. t -> SizeF t
SgnF (a -> b
f a
x)
CasesF [Case a]
xs -> forall t. [Case t] -> SizeF t
CasesF (forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) [Case a]
xs)
ValueF Natural
x -> forall t. Natural -> SizeF t
ValueF Natural
x
ApF Text
n Natural -> Natural
g a
x -> forall t. Text -> (Natural -> Natural) -> t -> SizeF t
ApF Text
n Natural -> Natural
g (a -> b
f a
x)
TodoF forall t. ToCBOR t => Proxy t -> Size
g Proxy a
x -> forall t a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> SizeF t
TodoF forall t. ToCBOR t => Proxy t -> Size
g Proxy a
x
instance Num (Fix SizeF) where
+ :: Size -> Size -> Size
(+) = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: forall t. t -> t -> SizeF t
AddF
* :: Size -> Size -> Size
(*) = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: forall t. t -> t -> SizeF t
MulF
(-) = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: forall t. t -> t -> SizeF t
SubF
negate :: Size -> Size
negate = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. t -> SizeF t
NegF
abs :: Size -> Size
abs = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. t -> SizeF t
AbsF
signum :: Size -> Size
signum = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. t -> SizeF t
SgnF
fromInteger :: Integer -> Size
fromInteger = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. Natural -> SizeF t
ValueF forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Num a => Integer -> a
fromInteger
instance B.Buildable t => B.Buildable (SizeF t) where
build :: SizeF t -> Builder
build SizeF t
x_
= let
showp2 :: (B.Buildable a, B.Buildable b) => a -> Text -> b -> Builder
showp2 :: forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 = forall a. Format Builder a -> a
bprint (Format (a -> Text -> b -> Builder) (a -> Text -> b -> Builder)
"(" forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (Text -> b -> Builder) (Text -> b -> Builder)
" " forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall r. Format r (Text -> r)
stext forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (b -> Builder) (b -> Builder)
" " forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")")
in
case SizeF t
x_ of
AddF t
x t
y -> forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 t
x Text
"+" t
y
MulF t
x t
y -> forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 t
x Text
"*" t
y
SubF t
x t
y -> forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 t
x Text
"-" t
y
NegF t
x -> forall a. Format Builder a -> a
bprint (Format (t -> Builder) (t -> Builder)
"-" forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build) t
x
AbsF t
x -> forall a. Format Builder a -> a
bprint (Format (t -> Builder) (t -> Builder)
"|" forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
"|") t
x
SgnF t
x -> forall a. Format Builder a -> a
bprint (Format (t -> Builder) (t -> Builder)
"sgn(" forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")") t
x
CasesF [Case t]
xs ->
forall a. Format Builder a -> a
bprint (Format (Builder -> Builder) (Builder -> Builder)
"{ " forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
"}") forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall a. Format Builder a -> a
bprint (forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
" ")) [Case t]
xs
ValueF Natural
x -> forall a. Format Builder a -> a
bprint forall a r. Show a => Format r (a -> r)
shown (forall a. Integral a => a -> Integer
toInteger Natural
x)
ApF Text
n Natural -> Natural
_ t
x -> forall a. Format Builder a -> a
bprint (forall r. Format r (Text -> r)
stext forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (t -> Builder) (t -> Builder)
"(" forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")") Text
n t
x
TodoF forall t. ToCBOR t => Proxy t -> Size
_ Proxy a
x -> forall a. Format Builder a -> a
bprint (Format (TypeRep -> Builder) (TypeRep -> Builder)
"(_ :: " forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Show a => Format r (a -> r)
shown forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")") (forall {k} (proxy :: k -> *) (a :: k).
Typeable a =>
proxy a -> TypeRep
typeRep Proxy a
x)
instance B.Buildable (Fix SizeF) where
build :: Size -> Builder
build Size
x = forall a. Format Builder a -> a
bprint forall a r. Buildable a => Format r (a -> r)
build (forall t. Recursive t => t -> Base t t
project @(Fix _) Size
x)
szCases :: [Case Size] -> Size
szCases :: [Case Size] -> Size
szCases = forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. [Case t] -> SizeF t
CasesF
data Case t =
Case Text t
deriving (forall a b. a -> Case b -> Case a
forall a b. (a -> b) -> Case a -> Case b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Case b -> Case a
$c<$ :: forall a b. a -> Case b -> Case a
fmap :: forall a b. (a -> b) -> Case a -> Case b
$cfmap :: forall a b. (a -> b) -> Case a -> Case b
Functor)
caseValue :: Case t -> t
caseValue :: forall t. Case t -> t
caseValue (Case Text
_ t
x) = t
x
instance B.Buildable t => B.Buildable (Case t) where
build :: Case t -> Builder
build (Case Text
n t
x) = forall a. Format Builder a -> a
bprint (forall r. Format r (Text -> r)
stext forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (t -> Builder) (t -> Builder)
"=" forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build) Text
n t
x
data Range b = Range
{ forall b. Range b -> b
lo :: b
, forall b. Range b -> b
hi :: b
}
instance (Ord b, Num b) => Num (Range b) where
Range b
x + :: Range b -> Range b -> Range b
+ Range b
y = Range {lo :: b
lo = forall b. Range b -> b
lo Range b
x forall a. Num a => a -> a -> a
+ forall b. Range b -> b
lo Range b
y, hi :: b
hi = forall b. Range b -> b
hi Range b
x forall a. Num a => a -> a -> a
+ forall b. Range b -> b
hi Range b
y}
Range b
x * :: Range b -> Range b -> Range b
* Range b
y =
let products :: [b]
products = [ b
u forall a. Num a => a -> a -> a
* b
v | b
u <- [forall b. Range b -> b
lo Range b
x, forall b. Range b -> b
hi Range b
x], b
v <- [forall b. Range b -> b
lo Range b
y, forall b. Range b -> b
hi Range b
y] ]
in Range {lo :: b
lo = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum [b]
products, hi :: b
hi = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum [b]
products}
Range b
x - :: Range b -> Range b -> Range b
- Range b
y = Range {lo :: b
lo = forall b. Range b -> b
lo Range b
x forall a. Num a => a -> a -> a
- forall b. Range b -> b
hi Range b
y, hi :: b
hi = forall b. Range b -> b
hi Range b
x forall a. Num a => a -> a -> a
- forall b. Range b -> b
lo Range b
y}
negate :: Range b -> Range b
negate Range b
x = Range {lo :: b
lo = forall a. Num a => a -> a
negate (forall b. Range b -> b
hi Range b
x), hi :: b
hi = forall a. Num a => a -> a
negate (forall b. Range b -> b
lo Range b
x)}
abs :: Range b -> Range b
abs Range b
x = if
| forall b. Range b -> b
lo Range b
x forall a. Ord a => a -> a -> Bool
<= b
0 Bool -> Bool -> Bool
&& forall b. Range b -> b
hi Range b
x forall a. Ord a => a -> a -> Bool
>= b
0 -> Range {lo :: b
lo = b
0, hi :: b
hi = forall a. Ord a => a -> a -> a
max (forall b. Range b -> b
hi Range b
x) (forall a. Num a => a -> a
negate forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
lo Range b
x)}
| forall b. Range b -> b
lo Range b
x forall a. Ord a => a -> a -> Bool
<= b
0 Bool -> Bool -> Bool
&& forall b. Range b -> b
hi Range b
x forall a. Ord a => a -> a -> Bool
<= b
0 -> Range {lo :: b
lo = forall a. Num a => a -> a
negate (forall b. Range b -> b
hi Range b
x), hi :: b
hi = forall a. Num a => a -> a
negate (forall b. Range b -> b
lo Range b
x)}
| Bool
otherwise -> Range b
x
signum :: Range b -> Range b
signum Range b
x = Range {lo :: b
lo = forall a. Num a => a -> a
signum (forall b. Range b -> b
lo Range b
x), hi :: b
hi = forall a. Num a => a -> a
signum (forall b. Range b -> b
hi Range b
x)}
fromInteger :: Integer -> Range b
fromInteger Integer
n = Range {lo :: b
lo = forall a. Num a => Integer -> a
fromInteger Integer
n, hi :: b
hi = forall a. Num a => Integer -> a
fromInteger Integer
n}
instance B.Buildable (Range Natural) where
build :: Range Natural -> Builder
build Range Natural
r = forall a. Format Builder a -> a
bprint (forall a r. Show a => Format r (a -> r)
shown forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (Integer -> Builder) (Integer -> Builder)
".." forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Show a => Format r (a -> r)
shown) (forall a. Integral a => a -> Integer
toInteger forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
lo Range Natural
r) (forall a. Integral a => a -> Integer
toInteger forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
hi Range Natural
r)
szEval
:: (forall t . ToCBOR t => (Proxy t -> Size) -> Proxy t -> Range Natural)
-> Size
-> Range Natural
szEval :: (forall t.
ToCBOR t =>
(Proxy t -> Size) -> Proxy t -> Range Natural)
-> Size -> Range Natural
szEval forall t. ToCBOR t => (Proxy t -> Size) -> Proxy t -> Range Natural
doit = forall t a. Recursive t => (Base t a -> a) -> t -> a
cata forall a b. (a -> b) -> a -> b
$ \case
AddF Range Natural
x Range Natural
y -> Range Natural
x forall a. Num a => a -> a -> a
+ Range Natural
y
MulF Range Natural
x Range Natural
y -> Range Natural
x forall a. Num a => a -> a -> a
* Range Natural
y
SubF Range Natural
x Range Natural
y -> Range Natural
x forall a. Num a => a -> a -> a
- Range Natural
y
NegF Range Natural
x -> forall a. Num a => a -> a
negate Range Natural
x
AbsF Range Natural
x -> forall a. Num a => a -> a
abs Range Natural
x
SgnF Range Natural
x -> forall a. Num a => a -> a
signum Range Natural
x
CasesF [Case (Range Natural)]
xs -> Range
{ lo :: Natural
lo = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum (forall a b. (a -> b) -> [a] -> [b]
map (forall b. Range b -> b
lo forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. Case t -> t
caseValue) [Case (Range Natural)]
xs)
, hi :: Natural
hi = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum (forall a b. (a -> b) -> [a] -> [b]
map (forall b. Range b -> b
hi forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. Case t -> t
caseValue) [Case (Range Natural)]
xs)
}
ValueF Natural
x -> Range {lo :: Natural
lo = Natural
x, hi :: Natural
hi = Natural
x}
ApF Text
_ Natural -> Natural
f Range Natural
x -> Range {lo :: Natural
lo = Natural -> Natural
f (forall b. Range b -> b
lo Range Natural
x), hi :: Natural
hi = Natural -> Natural
f (forall b. Range b -> b
hi Range Natural
x)}
TodoF forall t. ToCBOR t => Proxy t -> Size
f Proxy a
x -> forall t. ToCBOR t => (Proxy t -> Size) -> Proxy t -> Range Natural
doit forall t. ToCBOR t => Proxy t -> Size
f Proxy a
x
szLazy :: ToCBOR a => (Proxy a -> Size)
szLazy :: forall t. ToCBOR t => Proxy t -> Size
szLazy = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo (forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
szLazy)
szGreedy :: ToCBOR a => (Proxy a -> Size)
szGreedy :: forall t. ToCBOR t => Proxy t -> Size
szGreedy = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
szGreedy
isTodo :: Size -> Bool
isTodo :: Size -> Bool
isTodo (Fix (TodoF forall t. ToCBOR t => Proxy t -> Size
_ Proxy a
_)) = Bool
True
isTodo Size
_ = Bool
False
todo
:: forall a
. ToCBOR a
=> (forall t . ToCBOR t => Proxy t -> Size)
-> Proxy a
-> Size
todo :: forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo forall t. ToCBOR t => Proxy t -> Size
f Proxy a
pxy = forall (f :: * -> *). f (Fix f) -> Fix f
Fix (forall t a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> SizeF t
TodoF forall t. ToCBOR t => Proxy t -> Size
f Proxy a
pxy)
apMono :: Text -> (Natural -> Natural) -> Size -> Size
apMono :: Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f = \case
Fix (ValueF Natural
x ) -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix (forall t. Natural -> SizeF t
ValueF (Natural -> Natural
f Natural
x))
Fix (CasesF [Case Size]
cs) -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix (forall t. [Case t] -> SizeF t
CasesF (forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f)) [Case Size]
cs))
Size
x -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix (forall t. Text -> (Natural -> Natural) -> t -> SizeF t
ApF Text
n Natural -> Natural
f Size
x)
szWithCtx :: (ToCBOR a) => M.Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx :: forall a. ToCBOR a => Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx Map TypeRep SizeOverride
ctx Proxy a
pxy = case forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup (forall {k} (proxy :: k -> *) (a :: k).
Typeable a =>
proxy a -> TypeRep
typeRep Proxy a
pxy) Map TypeRep SizeOverride
ctx of
Maybe SizeOverride
Nothing -> Size
normal
Just SizeOverride
override -> case SizeOverride
override of
SizeConstant Size
sz -> Size
sz
SizeExpression (forall t. ToCBOR t => Proxy t -> Size) -> Size
f -> (forall t. ToCBOR t => Proxy t -> Size) -> Size
f (forall a. ToCBOR a => Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx Map TypeRep SizeOverride
ctx)
SelectCases [Text]
names -> forall t a. Recursive t => (Base t a -> a) -> t -> a
cata ([Text] -> SizeF Size -> Size
selectCase [Text]
names) Size
normal
where
normal :: Size
normal = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr (forall a. ToCBOR a => Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx Map TypeRep SizeOverride
ctx) Proxy a
pxy
selectCase :: [Text] -> SizeF Size -> Size
selectCase :: [Text] -> SizeF Size -> Size
selectCase [Text]
names SizeF Size
orig = case SizeF Size
orig of
CasesF [Case Size]
cs -> [Text] -> [Case Size] -> Size -> Size
matchCase [Text]
names [Case Size]
cs (forall (f :: * -> *). f (Fix f) -> Fix f
Fix SizeF Size
orig)
SizeF Size
_ -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix SizeF Size
orig
matchCase :: [Text] -> [Case Size] -> Size -> Size
matchCase :: [Text] -> [Case Size] -> Size -> Size
matchCase [Text]
names [Case Size]
cs Size
orig =
case forall a. (a -> Bool) -> [a] -> [a]
filter (\(Case Text
name Size
_) -> Text
name forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Text]
names) [Case Size]
cs of
[] -> Size
orig
[Case Text
_ Size
x] -> Size
x
[Case Size]
cs' -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix (forall t. [Case t] -> SizeF t
CasesF [Case Size]
cs')
data SizeOverride
= SizeConstant Size
| SizeExpression ((forall a. ToCBOR a => Proxy a -> Size) -> Size)
| SelectCases [Text]
szSimplify :: Size -> Either Size (Range Natural)
szSimplify :: Size -> Either Size (Range Natural)
szSimplify = forall t a. Recursive t => (Base t a -> a) -> t -> a
cata forall a b. (a -> b) -> a -> b
$ \case
TodoF forall t. ToCBOR t => Proxy t -> Size
f Proxy a
pxy -> forall a b. a -> Either a b
Left (forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo forall t. ToCBOR t => Proxy t -> Size
f Proxy a
pxy)
ValueF Natural
x -> forall a b. b -> Either a b
Right (Range {lo :: Natural
lo = Natural
x, hi :: Natural
hi = Natural
x})
CasesF [Case (Either Size (Range Natural))]
xs -> case forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall t. Case t -> t
caseValue [Case (Either Size (Range Natural))]
xs of
Right [Range Natural]
xs' ->
forall a b. b -> Either a b
Right (Range {lo :: Natural
lo = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum (forall a b. (a -> b) -> [a] -> [b]
map forall b. Range b -> b
lo [Range Natural]
xs'), hi :: Natural
hi = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum (forall a b. (a -> b) -> [a] -> [b]
map forall b. Range b -> b
hi [Range Natural]
xs')})
Left Size
_ -> forall a b. a -> Either a b
Left ([Case Size] -> Size
szCases forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Either Size (Range Natural) -> Size
toSize) [Case (Either Size (Range Natural))]
xs)
AddF Either Size (Range Natural)
x Either Size (Range Natural)
y -> (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp forall a. Num a => a -> a -> a
(+) Either Size (Range Natural)
x Either Size (Range Natural)
y
MulF Either Size (Range Natural)
x Either Size (Range Natural)
y -> (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp forall a. Num a => a -> a -> a
(*) Either Size (Range Natural)
x Either Size (Range Natural)
y
SubF Either Size (Range Natural)
x Either Size (Range Natural)
y -> (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp (-) Either Size (Range Natural)
x Either Size (Range Natural)
y
NegF Either Size (Range Natural)
x -> (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
negate Either Size (Range Natural)
x
AbsF Either Size (Range Natural)
x -> (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
abs Either Size (Range Natural)
x
SgnF Either Size (Range Natural)
x -> (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
signum Either Size (Range Natural)
x
ApF Text
_ Natural -> Natural
f (Right Range Natural
x) -> forall a b. b -> Either a b
Right (Range {lo :: Natural
lo = Natural -> Natural
f (forall b. Range b -> b
lo Range Natural
x), hi :: Natural
hi = Natural -> Natural
f (forall b. Range b -> b
hi Range Natural
x)})
ApF Text
n Natural -> Natural
f (Left Size
x) -> forall a b. a -> Either a b
Left (Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f Size
x)
where
binOp
:: (forall a . Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp :: (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp forall a. Num a => a -> a -> a
op (Right Range Natural
x) (Right Range Natural
y) = forall a b. b -> Either a b
Right (forall a. Num a => a -> a -> a
op Range Natural
x Range Natural
y)
binOp forall a. Num a => a -> a -> a
op Either Size (Range Natural)
x Either Size (Range Natural)
y = forall a b. a -> Either a b
Left (forall a. Num a => a -> a -> a
op (Either Size (Range Natural) -> Size
toSize Either Size (Range Natural)
x) (Either Size (Range Natural) -> Size
toSize Either Size (Range Natural)
y))
unOp
:: (forall a . Num a => a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
unOp :: (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
f = \case
Right Range Natural
x -> forall a b. b -> Either a b
Right (forall a. Num a => a -> a
f Range Natural
x)
Left Size
x -> forall a b. a -> Either a b
Left (forall a. Num a => a -> a
f Size
x)
toSize :: Either Size (Range Natural) -> Size
toSize :: Either Size (Range Natural) -> Size
toSize = \case
Left Size
x -> Size
x
Right Range Natural
r -> if forall b. Range b -> b
lo Range Natural
r forall a. Eq a => a -> a -> Bool
== forall b. Range b -> b
hi Range Natural
r
then forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall b. Range b -> b
lo Range Natural
r)
else [Case Size] -> Size
szCases
[forall t. Text -> t -> Case t
Case Text
"lo" (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
lo Range Natural
r), forall t. Text -> t -> Case t
Case Text
"hi" (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
hi Range Natural
r)]
szForce :: Size -> Size
szForce :: Size -> Size
szForce = forall t a. Recursive t => (Base t a -> a) -> t -> a
cata forall a b. (a -> b) -> a -> b
$ \case
AddF Size
x Size
y -> Size
x forall a. Num a => a -> a -> a
+ Size
y
MulF Size
x Size
y -> Size
x forall a. Num a => a -> a -> a
* Size
y
SubF Size
x Size
y -> Size
x forall a. Num a => a -> a -> a
- Size
y
NegF Size
x -> forall a. Num a => a -> a
negate Size
x
AbsF Size
x -> forall a. Num a => a -> a
abs Size
x
SgnF Size
x -> forall a. Num a => a -> a
signum Size
x
CasesF [Case Size]
xs -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix forall a b. (a -> b) -> a -> b
$ forall t. [Case t] -> SizeF t
CasesF [Case Size]
xs
ValueF Natural
x -> forall (f :: * -> *). f (Fix f) -> Fix f
Fix (forall t. Natural -> SizeF t
ValueF Natural
x)
ApF Text
n Natural -> Natural
f Size
x -> Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f Size
x
TodoF forall t. ToCBOR t => Proxy t -> Size
f Proxy a
x -> forall t. ToCBOR t => Proxy t -> Size
f Proxy a
x
szBounds :: ToCBOR a => a -> Either Size (Range Natural)
szBounds :: forall a. ToCBOR a => a -> Either Size (Range Natural)
szBounds = Size -> Either Size (Range Natural)
szSimplify forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. ToCBOR t => Proxy t -> Size
szGreedy forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure
withWordSize :: (Integral s, Integral a) => s -> a
withWordSize :: forall s a. (Integral s, Integral a) => s -> a
withWordSize s
x =
let s :: Integer
s = forall a b. (Integral a, Num b) => a -> b
fromIntegral s
x :: Integer
in
if
| Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0x17 Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x18) -> a
1
| Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0xff Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x100) -> a
2
| Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0xffff Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x10000) -> a
3
| Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0xffffffff Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x100000000) -> a
5
| Bool
otherwise -> a
9
instance ToCBOR () where
toCBOR :: () -> Encoding
toCBOR = forall a b. a -> b -> a
const Encoding
E.encodeNull
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy () -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ Proxy ()
_ = Size
1
instance ToCBOR Bool where
toCBOR :: Bool -> Encoding
toCBOR = Bool -> Encoding
E.encodeBool
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Bool -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ Proxy Bool
_ = Size
1
instance ToCBOR Integer where
toCBOR :: Integer -> Encoding
toCBOR = Integer -> Encoding
E.encodeInteger
encodedSizeRange :: forall a . (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange :: forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange Proxy a
_ = [Case Size] -> Size
szCases
[ Text -> a -> Case Size
mkCase Text
"minBound" a
0
, Text -> a -> Case Size
mkCase Text
"maxBound" forall a. Bounded a => a
maxBound
]
where
mkCase :: Text -> a -> Case Size
mkCase :: Text -> a -> Case Size
mkCase Text
n a
x = forall t. Text -> t -> Case t
Case Text
n (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ (forall s a. (Integral s, Integral a) => s -> a
withWordSize :: a -> Integer) a
x)
instance ToCBOR Word where
toCBOR :: Word -> Encoding
toCBOR = Word -> Encoding
E.encodeWord
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Word -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Word8 where
toCBOR :: Word8 -> Encoding
toCBOR = Word8 -> Encoding
E.encodeWord8
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Word8 -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Word16 where
toCBOR :: Word16 -> Encoding
toCBOR = Word16 -> Encoding
E.encodeWord16
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Word16 -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Word32 where
toCBOR :: Word32 -> Encoding
toCBOR = Word32 -> Encoding
E.encodeWord32
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Word32 -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Word64 where
toCBOR :: Word64 -> Encoding
toCBOR = Word64 -> Encoding
E.encodeWord64
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Word64 -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Int where
toCBOR :: Int -> Encoding
toCBOR = Int -> Encoding
E.encodeInt
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Int -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Float where
toCBOR :: Float -> Encoding
toCBOR = Float -> Encoding
E.encodeFloat
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Float -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ Proxy Float
_ = Size
1 forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Storable a => a -> Int
sizeOf (Float
0 :: Float))
instance ToCBOR Int32 where
toCBOR :: Int32 -> Encoding
toCBOR = Int32 -> Encoding
E.encodeInt32
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Int32 -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR Int64 where
toCBOR :: Int64 -> Encoding
toCBOR = Int64 -> Encoding
E.encodeInt64
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Int64 -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange
instance ToCBOR a => ToCBOR (Ratio a) where
toCBOR :: Ratio a -> Encoding
toCBOR Ratio a
r = Word -> Encoding
E.encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR (forall a. Ratio a -> a
numerator Ratio a
r) forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR (forall a. Ratio a -> a
denominator Ratio a
r)
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy (Ratio a) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (Ratio a)
_ = Size
1 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
instance ToCBOR Nano where
toCBOR :: Nano -> Encoding
toCBOR (MkFixed Integer
nanoseconds) = forall a. ToCBOR a => a -> Encoding
toCBOR Integer
nanoseconds
instance ToCBOR Pico where
toCBOR :: Pico -> Encoding
toCBOR (MkFixed Integer
picoseconds) = forall a. ToCBOR a => a -> Encoding
toCBOR Integer
picoseconds
instance ToCBOR NominalDiffTime where
toCBOR :: NominalDiffTime -> Encoding
toCBOR = forall a. ToCBOR a => a -> Encoding
toCBOR forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (forall a. Integral a => a -> a -> a
`div` Integer
1e6) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. NominalDiffTime -> Integer
toPicoseconds
where
toPicoseconds :: NominalDiffTime -> Integer
toPicoseconds :: NominalDiffTime -> Integer
toPicoseconds NominalDiffTime
t =
forall a. Ratio a -> a
numerator (forall a. Real a => a -> Ratio Integer
toRational NominalDiffTime
t forall a. Num a => a -> a -> a
* forall a. Real a => a -> Ratio Integer
toRational (forall k (a :: k) (p :: k -> *). HasResolution a => p a -> Integer
resolution forall a b. (a -> b) -> a -> b
$ forall {k} (t :: k). Proxy t
Proxy @E12))
instance ToCBOR Natural where
toCBOR :: Natural -> Encoding
toCBOR = forall a. ToCBOR a => a -> Encoding
toCBOR forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Integral a => a -> Integer
toInteger
instance ToCBOR Void where
toCBOR :: Void -> Encoding
toCBOR = forall a. Void -> a
absurd
instance (Typeable s, ToCBOR a) => ToCBOR (Tagged s a) where
toCBOR :: Tagged s a -> Encoding
toCBOR (Tagged a
a) = forall a. ToCBOR a => a -> Encoding
toCBOR a
a
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (Tagged s a) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (Tagged s a)
_ = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
instance (ToCBOR a, ToCBOR b) => ToCBOR (a,b) where
toCBOR :: (a, b) -> Encoding
toCBOR (a
a, b
b) = Word -> Encoding
E.encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR a
a forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR b
b
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy (a, b) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (a, b)
_ = Size
1 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)
instance (ToCBOR a, ToCBOR b, ToCBOR c) => ToCBOR (a,b,c) where
toCBOR :: (a, b, c) -> Encoding
toCBOR (a
a, b
b, c
c) = Word -> Encoding
E.encodeListLen Word
3 forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR a
a forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR b
b forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR c
c
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy (a, b, c) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (a, b, c)
_ =
Size
1 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)
instance (ToCBOR a, ToCBOR b, ToCBOR c, ToCBOR d) => ToCBOR (a,b,c,d) where
toCBOR :: (a, b, c, d) -> Encoding
toCBOR (a
a, b
b, c
c, d
d) =
Word -> Encoding
E.encodeListLen Word
4 forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR a
a forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR b
b forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR c
c forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR d
d
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (a, b, c, d)
_ =
Size
1 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c) forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)
instance
(ToCBOR a, ToCBOR b, ToCBOR c, ToCBOR d, ToCBOR e)
=> ToCBOR (a, b, c, d, e)
where
toCBOR :: (a, b, c, d, e) -> Encoding
toCBOR (a
a, b
b, c
c, d
d, e
e) =
Word -> Encoding
E.encodeListLen Word
5
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR a
a
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR b
b
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR c
c
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR d
d
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR e
e
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d, e) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (a, b, c, d, e)
_ =
Size
1
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @e)
instance
(ToCBOR a, ToCBOR b, ToCBOR c, ToCBOR d, ToCBOR e, ToCBOR f, ToCBOR g)
=> ToCBOR (a, b, c, d, e, f, g)
where
toCBOR :: (a, b, c, d, e, f, g) -> Encoding
toCBOR (a
a, b
b, c
c, d
d, e
e, f
f, g
g) =
Word -> Encoding
E.encodeListLen Word
7
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR a
a
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR b
b
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR c
c
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR d
d
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR e
e
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR f
f
forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR g
g
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d, e, f, g) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (a, b, c, d, e, f, g)
_ =
Size
1
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @e)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @f)
forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @g)
instance ToCBOR BS.ByteString where
toCBOR :: ByteString -> Encoding
toCBOR = ByteString -> Encoding
E.encodeBytes
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy ByteString -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy ByteString
_ =
let len :: Size
len = forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf BS.ByteString))
in Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize@Int" (forall s a. (Integral s, Integral a) => s -> a
withWordSize @Int forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) Size
len forall a. Num a => a -> a -> a
+ Size
len
instance ToCBOR Text.Text where
toCBOR :: Text -> Encoding
toCBOR = Text -> Encoding
E.encodeString
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy Text -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy Text
_ =
let
bsLength :: Size
bsLength = forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf Text))
forall a. Num a => a -> a -> a
* [Case Size] -> Size
szCases [forall t. Text -> t -> Case t
Case Text
"minChar" Size
1, forall t. Text -> t -> Case t
Case Text
"maxChar" Size
4]
in Size
bsLength forall a. Num a => a -> a -> a
+ Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize" forall s a. (Integral s, Integral a) => s -> a
withWordSize Size
bsLength
instance ToCBOR SBS.ShortByteString where
toCBOR :: ShortByteString -> Encoding
toCBOR sbs :: ShortByteString
sbs@(SBS ByteArray#
ba) =
SlicedByteArray -> Encoding
E.encodeByteArray forall a b. (a -> b) -> a -> b
$ ByteArray -> Int -> Int -> SlicedByteArray
BAS.SBA (ByteArray# -> ByteArray
Prim.ByteArray ByteArray#
ba) Int
0 (ShortByteString -> Int
SBS.length ShortByteString
sbs)
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy ShortByteString -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy ShortByteString
_ =
let len :: Size
len = forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf SBS.ShortByteString))
in Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize@Int" (forall s a. (Integral s, Integral a) => s -> a
withWordSize @Int forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) Size
len forall a. Num a => a -> a -> a
+ Size
len
instance ToCBOR BS.Lazy.ByteString where
toCBOR :: ByteString -> Encoding
toCBOR = forall a. ToCBOR a => a -> Encoding
toCBOR forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. ByteString -> ByteString
BS.Lazy.toStrict
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy ByteString -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy ByteString
_ =
let len :: Size
len = forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf BS.Lazy.ByteString))
in Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize@Int" (forall s a. (Integral s, Integral a) => s -> a
withWordSize @Int forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) Size
len forall a. Num a => a -> a -> a
+ Size
len
instance ToCBOR a => ToCBOR [a] where
toCBOR :: [a] -> Encoding
toCBOR [a]
xs = Encoding
E.encodeListLenIndef forall a. Semigroup a => a -> a -> a
<> forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\a
x Encoding
r -> forall a. ToCBOR a => a -> Encoding
toCBOR a
x forall a. Semigroup a => a -> a -> a
<> Encoding
r) Encoding
E.encodeBreak [a]
xs
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy [a]
_ = forall a.
ToCBOR a =>
(forall t. ToCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
encodedListSizeExpr forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @[a])
instance (ToCBOR a, ToCBOR b) => ToCBOR (Either a b) where
toCBOR :: Either a b -> Encoding
toCBOR (Left a
x) = Word -> Encoding
E.encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> Word -> Encoding
E.encodeWord Word
0 forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR a
x
toCBOR (Right b
x) = Word -> Encoding
E.encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> Word -> Encoding
E.encodeWord Word
1 forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR b
x
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (Either a b) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (Either a b)
_ = [Case Size] -> Size
szCases
[forall t. Text -> t -> Case t
Case Text
"Left" (Size
2 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)), forall t. Text -> t -> Case t
Case Text
"Right" (Size
2 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b))]
instance ToCBOR a => ToCBOR (NonEmpty a) where
toCBOR :: NonEmpty a -> Encoding
toCBOR = forall a. ToCBOR a => a -> Encoding
toCBOR forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (t :: * -> *) a. Foldable t => t a -> [a]
toList
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (NonEmpty a) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (NonEmpty a)
_ = forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @[a])
instance ToCBOR a => ToCBOR (Maybe a) where
toCBOR :: Maybe a -> Encoding
toCBOR = forall a. (a -> Encoding) -> Maybe a -> Encoding
toCBORMaybe forall a. ToCBOR a => a -> Encoding
toCBOR
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy (Maybe a) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (Maybe a)
_ =
[Case Size] -> Size
szCases [forall t. Text -> t -> Case t
Case Text
"Nothing" Size
1, forall t. Text -> t -> Case t
Case Text
"Just" (Size
1 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a))]
toCBORMaybe :: (a -> Encoding) -> Maybe a -> Encoding
toCBORMaybe :: forall a. (a -> Encoding) -> Maybe a -> Encoding
toCBORMaybe a -> Encoding
encodeA = \case
Maybe a
Nothing -> Word -> Encoding
E.encodeListLen Word
0
Just a
x -> Word -> Encoding
E.encodeListLen Word
1 forall a. Semigroup a => a -> a -> a
<> a -> Encoding
encodeA a
x
encodeContainerSkel
:: (Word -> E.Encoding)
-> (container -> Int)
-> (accumFunc -> E.Encoding -> container -> E.Encoding)
-> accumFunc
-> container
-> E.Encoding
encodeContainerSkel :: forall container accumFunc.
(Word -> Encoding)
-> (container -> Int)
-> (accumFunc -> Encoding -> container -> Encoding)
-> accumFunc
-> container
-> Encoding
encodeContainerSkel Word -> Encoding
encodeLen container -> Int
size accumFunc -> Encoding -> container -> Encoding
foldFunction accumFunc
f container
c =
Word -> Encoding
encodeLen (forall a b. (Integral a, Num b) => a -> b
fromIntegral (container -> Int
size container
c)) forall a. Semigroup a => a -> a -> a
<> accumFunc -> Encoding -> container -> Encoding
foldFunction accumFunc
f forall a. Monoid a => a
mempty container
c
{-# INLINE encodeContainerSkel #-}
encodeMapSkel
:: (ToCBOR k, ToCBOR v)
=> (m -> Int)
-> ((k -> v -> E.Encoding -> E.Encoding) -> E.Encoding -> m -> E.Encoding)
-> m
-> E.Encoding
encodeMapSkel :: forall k v m.
(ToCBOR k, ToCBOR v) =>
(m -> Int)
-> ((k -> v -> Encoding -> Encoding) -> Encoding -> m -> Encoding)
-> m
-> Encoding
encodeMapSkel m -> Int
size (k -> v -> Encoding -> Encoding) -> Encoding -> m -> Encoding
foldrWithKey = forall container accumFunc.
(Word -> Encoding)
-> (container -> Int)
-> (accumFunc -> Encoding -> container -> Encoding)
-> accumFunc
-> container
-> Encoding
encodeContainerSkel
Word -> Encoding
E.encodeMapLen
m -> Int
size
(k -> v -> Encoding -> Encoding) -> Encoding -> m -> Encoding
foldrWithKey
(\k
k v
v Encoding
b -> forall a. ToCBOR a => a -> Encoding
toCBOR k
k forall a. Semigroup a => a -> a -> a
<> forall a. ToCBOR a => a -> Encoding
toCBOR v
v forall a. Semigroup a => a -> a -> a
<> Encoding
b)
{-# INLINE encodeMapSkel #-}
instance (Ord k, ToCBOR k, ToCBOR v) => ToCBOR (M.Map k v) where
toCBOR :: Map k v -> Encoding
toCBOR = forall k v m.
(ToCBOR k, ToCBOR v) =>
(m -> Int)
-> ((k -> v -> Encoding -> Encoding) -> Encoding -> m -> Encoding)
-> m
-> Encoding
encodeMapSkel forall k a. Map k a -> Int
M.size forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
M.foldrWithKey
encodeSetSkel
:: ToCBOR a
=> (s -> Int)
-> ((a -> E.Encoding -> E.Encoding) -> E.Encoding -> s -> E.Encoding)
-> s
-> E.Encoding
encodeSetSkel :: forall a s.
ToCBOR a =>
(s -> Int)
-> ((a -> Encoding -> Encoding) -> Encoding -> s -> Encoding)
-> s
-> Encoding
encodeSetSkel s -> Int
size (a -> Encoding -> Encoding) -> Encoding -> s -> Encoding
foldFunction = forall a. Monoid a => a -> a -> a
mappend Encoding
encodeSetTag forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall container accumFunc.
(Word -> Encoding)
-> (container -> Int)
-> (accumFunc -> Encoding -> container -> Encoding)
-> accumFunc
-> container
-> Encoding
encodeContainerSkel
Word -> Encoding
E.encodeListLen
s -> Int
size
(a -> Encoding -> Encoding) -> Encoding -> s -> Encoding
foldFunction
(\a
a Encoding
b -> forall a. ToCBOR a => a -> Encoding
toCBOR a
a forall a. Semigroup a => a -> a -> a
<> Encoding
b)
{-# INLINE encodeSetSkel #-}
setTag :: Word
setTag :: Word
setTag = Word
258
encodeSetTag :: E.Encoding
encodeSetTag :: Encoding
encodeSetTag = Word -> Encoding
E.encodeTag Word
setTag
instance (Ord a, ToCBOR a) => ToCBOR (S.Set a) where
toCBOR :: Set a -> Encoding
toCBOR = forall a s.
ToCBOR a =>
(s -> Int)
-> ((a -> Encoding -> Encoding) -> Encoding -> s -> Encoding)
-> s
-> Encoding
encodeSetSkel forall a. Set a -> Int
S.size forall a b. (a -> b -> b) -> b -> Set a -> b
S.foldr
encodeVector :: (ToCBOR a, Vector.Generic.Vector v a) => v a -> E.Encoding
encodeVector :: forall a (v :: * -> *). (ToCBOR a, Vector v a) => v a -> Encoding
encodeVector = forall container accumFunc.
(Word -> Encoding)
-> (container -> Int)
-> (accumFunc -> Encoding -> container -> Encoding)
-> accumFunc
-> container
-> Encoding
encodeContainerSkel
Word -> Encoding
E.encodeListLen
forall (v :: * -> *) a. Vector v a => v a -> Int
Vector.Generic.length
forall (v :: * -> *) a b.
Vector v a =>
(a -> b -> b) -> b -> v a -> b
Vector.Generic.foldr
(\a
a Encoding
b -> forall a. ToCBOR a => a -> Encoding
toCBOR a
a forall a. Semigroup a => a -> a -> a
<> Encoding
b)
{-# INLINE encodeVector #-}
instance (ToCBOR a) => ToCBOR (Vector.Vector a) where
toCBOR :: Vector a -> Encoding
toCBOR = forall a (v :: * -> *). (ToCBOR a, Vector v a) => v a -> Encoding
encodeVector
{-# INLINE toCBOR #-}
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size) -> Proxy (Vector a) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
size Proxy (Vector a)
_ =
Size
2 forall a. Num a => a -> a -> a
+ forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf (Vector.Vector a))) forall a. Num a => a -> a -> a
* forall t. ToCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
instance ToCBOR UTCTime where
toCBOR :: UTCTime -> Encoding
toCBOR (UTCTime Day
day DiffTime
timeOfDay) = forall a. Monoid a => [a] -> a
mconcat [
Word -> Encoding
encodeListLen Word
3
, Integer -> Encoding
encodeInteger Integer
year
, Int -> Encoding
encodeInt Int
dayOfYear
, Integer -> Encoding
encodeInteger Integer
timeOfDayPico
]
where
(Integer
year, Int
dayOfYear) = Day -> (Integer, Int)
toOrdinalDate Day
day
timeOfDayPico :: Integer
timeOfDayPico = DiffTime -> Integer
diffTimeToPicoseconds DiffTime
timeOfDay