{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -fno-omit-interface-pragmas #-}
{-# OPTIONS_GHC -fplugin-opt PlutusTx.Plugin:debug-context #-}
{-# OPTIONS_GHC -fno-ignore-interface-pragmas #-}
module PlutusTx.Sqrt(
Sqrt (..)
, rsqrt
, isqrt
) where
import PlutusTx.IsData (makeIsDataIndexed)
import PlutusTx.Lift (makeLift)
import PlutusTx.Prelude (Integer, divide, negate, otherwise, ($), (*), (+), (<), (<=), (==))
import PlutusTx.Ratio (Rational, denominator, numerator, unsafeRatio)
import Prelude qualified as Haskell
data Sqrt
= Imaginary
| Exactly Integer
| Approximately Integer
deriving stock (Int -> Sqrt -> ShowS
[Sqrt] -> ShowS
Sqrt -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Sqrt] -> ShowS
$cshowList :: [Sqrt] -> ShowS
show :: Sqrt -> String
$cshow :: Sqrt -> String
showsPrec :: Int -> Sqrt -> ShowS
$cshowsPrec :: Int -> Sqrt -> ShowS
Haskell.Show, Sqrt -> Sqrt -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Sqrt -> Sqrt -> Bool
$c/= :: Sqrt -> Sqrt -> Bool
== :: Sqrt -> Sqrt -> Bool
$c== :: Sqrt -> Sqrt -> Bool
Haskell.Eq)
{-# INLINABLE rsqrt #-}
rsqrt :: Rational -> Sqrt
rsqrt :: Rational -> Sqrt
rsqrt Rational
r
| Integer
n forall a. MultiplicativeSemigroup a => a -> a -> a
* Integer
d forall a. Ord a => a -> a -> Bool
< Integer
0 = Sqrt
Imaginary
| Integer
n forall a. Eq a => a -> a -> Bool
== Integer
0 = Integer -> Sqrt
Exactly Integer
0
| Integer
n forall a. Eq a => a -> a -> Bool
== Integer
d = Integer -> Sqrt
Exactly Integer
1
| Integer
n forall a. Ord a => a -> a -> Bool
< Integer
d = Integer -> Sqrt
Approximately Integer
0
| Integer
n forall a. Ord a => a -> a -> Bool
< Integer
0 = Rational -> Sqrt
rsqrt forall a b. (a -> b) -> a -> b
$ Integer -> Integer -> Rational
unsafeRatio (forall a. AdditiveGroup a => a -> a
negate Integer
n) (forall a. AdditiveGroup a => a -> a
negate Integer
d)
| Bool
otherwise = Integer -> Integer -> Sqrt
go Integer
1 forall a b. (a -> b) -> a -> b
$ Integer
1 forall a. AdditiveSemigroup a => a -> a -> a
+ Integer -> Integer -> Integer
divide Integer
n Integer
d
where
n :: Integer
n = Rational -> Integer
numerator Rational
r
d :: Integer
d = Rational -> Integer
denominator Rational
r
go :: Integer -> Integer -> Sqrt
go :: Integer -> Integer -> Sqrt
go Integer
l Integer
u
| Integer
l forall a. MultiplicativeSemigroup a => a -> a -> a
* Integer
l forall a. MultiplicativeSemigroup a => a -> a -> a
* Integer
d forall a. Eq a => a -> a -> Bool
== Integer
n = Integer -> Sqrt
Exactly Integer
l
| Integer
u forall a. Eq a => a -> a -> Bool
== (Integer
l forall a. AdditiveSemigroup a => a -> a -> a
+ Integer
1) = Integer -> Sqrt
Approximately Integer
l
| Bool
otherwise =
let
m :: Integer
m = Integer -> Integer -> Integer
divide (Integer
l forall a. AdditiveSemigroup a => a -> a -> a
+ Integer
u) Integer
2
in
if Integer
m forall a. MultiplicativeSemigroup a => a -> a -> a
* Integer
m forall a. MultiplicativeSemigroup a => a -> a -> a
* Integer
d forall a. Ord a => a -> a -> Bool
<= Integer
n then Integer -> Integer -> Sqrt
go Integer
m Integer
u
else Integer -> Integer -> Sqrt
go Integer
l Integer
m
{-# INLINABLE isqrt #-}
isqrt :: Integer -> Sqrt
isqrt :: Integer -> Sqrt
isqrt Integer
n = Rational -> Sqrt
rsqrt (Integer -> Integer -> Rational
unsafeRatio Integer
n Integer
1)
makeLift ''Sqrt
makeIsDataIndexed ''Sqrt [ ('Imaginary, 0)
, ('Exactly, 1)
, ('Approximately, 2)
]