{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UnboxedSums #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
{-# OPTIONS_HADDOCK not-home #-}
module Data.HashMap.Internal
(
HashMap(..)
, Leaf(..)
, empty
, singleton
, null
, size
, member
, lookup
, (!?)
, findWithDefault
, lookupDefault
, (!)
, insert
, insertWith
, unsafeInsert
, delete
, adjust
, update
, alter
, alterF
, isSubmapOf
, isSubmapOfBy
, union
, unionWith
, unionWithKey
, unions
, compose
, map
, mapWithKey
, traverseWithKey
, mapKeys
, difference
, differenceWith
, intersection
, intersectionWith
, intersectionWithKey
, intersectionWithKey#
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, mapMaybe
, mapMaybeWithKey
, filter
, filterWithKey
, keys
, elems
, toList
, fromList
, fromListWith
, fromListWithKey
, Hash
, Bitmap
, bitmapIndexedOrFull
, collision
, hash
, mask
, index
, bitsPerSubkey
, fullNodeMask
, sparseIndex
, two
, unionArrayBy
, update32
, update32M
, update32With'
, updateOrConcatWithKey
, filterMapAux
, equalKeys
, equalKeys1
, lookupRecordCollision
, LookupRes(..)
, insert'
, delete'
, lookup'
, insertNewKey
, insertKeyExists
, deleteKeyExists
, insertModifying
, ptrEq
, adjust#
) where
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData (..), NFData1 (..), NFData2 (..))
import Control.Monad.ST (ST, runST)
import Data.Bifoldable (Bifoldable (..))
import Data.Bits (complement, countTrailingZeros, popCount,
shiftL, unsafeShiftL, unsafeShiftR, (.&.),
(.|.))
import Data.Coerce (coerce)
import Data.Data (Constr, Data (..), DataType)
import Data.Functor.Classes (Eq1 (..), Eq2 (..), Ord1 (..), Ord2 (..),
Read1 (..), Show1 (..), Show2 (..))
import Data.Functor.Identity (Identity (..))
import Data.Hashable (Hashable)
import Data.Hashable.Lifted (Hashable1, Hashable2)
import Data.HashMap.Internal.List (isPermutationBy, unorderedCompare)
import Data.Semigroup (Semigroup (..), stimesIdempotentMonoid)
import GHC.Exts (Int (..), Int#, TYPE, (==#))
import GHC.Stack (HasCallStack)
import Prelude hiding (filter, foldl, foldr, lookup, map,
null, pred)
import Text.Read hiding (step)
import qualified Data.Data as Data
import qualified Data.Foldable as Foldable
import qualified Data.Functor.Classes as FC
import qualified Data.Hashable as H
import qualified Data.Hashable.Lifted as H
import qualified Data.HashMap.Internal.Array as A
import qualified Data.List as List
import qualified GHC.Exts as Exts
import qualified Language.Haskell.TH.Syntax as TH
hash :: H.Hashable a => a -> Hash
hash :: forall a. Hashable a => a -> Bitmap
hash = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Hashable a => a -> Int
H.hash
data Leaf k v = L !k v
deriving (Leaf k v -> Leaf k v -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
/= :: Leaf k v -> Leaf k v -> Bool
$c/= :: forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
== :: Leaf k v -> Leaf k v -> Bool
$c== :: forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
Eq)
instance (NFData k, NFData v) => NFData (Leaf k v) where
rnf :: Leaf k v -> ()
rnf (L k
k v
v) = forall a. NFData a => a -> ()
rnf k
k seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf v
v
instance (TH.Lift k, TH.Lift v) => TH.Lift (Leaf k v) where
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: forall (m :: * -> *). Quote m => Leaf k v -> Code m (Leaf k v)
liftTyped (L k
k v
v) = [|| L k $! v ||]
#else
lift (L k v) = [| L k $! v |]
#endif
instance NFData k => NFData1 (Leaf k) where
liftRnf :: forall a. (a -> ()) -> Leaf k a -> ()
liftRnf = forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 forall a. NFData a => a -> ()
rnf
instance NFData2 Leaf where
liftRnf2 :: forall a b. (a -> ()) -> (b -> ()) -> Leaf a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (L a
k b
v) = a -> ()
rnf1 a
k seq :: forall a b. a -> b -> b
`seq` b -> ()
rnf2 b
v
data HashMap k v
= Empty
| BitmapIndexed !Bitmap !(A.Array (HashMap k v))
| Leaf !Hash !(Leaf k v)
| Full !(A.Array (HashMap k v))
| Collision !Hash !(A.Array (Leaf k v))
type role HashMap nominal representational
deriving instance (TH.Lift k, TH.Lift v) => TH.Lift (HashMap k v)
instance (NFData k, NFData v) => NFData (HashMap k v) where
rnf :: HashMap k v -> ()
rnf HashMap k v
Empty = ()
rnf (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = forall a. NFData a => a -> ()
rnf Array (HashMap k v)
ary
rnf (Leaf Bitmap
_ Leaf k v
l) = forall a. NFData a => a -> ()
rnf Leaf k v
l
rnf (Full Array (HashMap k v)
ary) = forall a. NFData a => a -> ()
rnf Array (HashMap k v)
ary
rnf (Collision Bitmap
_ Array (Leaf k v)
ary) = forall a. NFData a => a -> ()
rnf Array (Leaf k v)
ary
instance NFData k => NFData1 (HashMap k) where
liftRnf :: forall a. (a -> ()) -> HashMap k a -> ()
liftRnf = forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 forall a. NFData a => a -> ()
rnf
instance NFData2 HashMap where
liftRnf2 :: forall a b. (a -> ()) -> (b -> ()) -> HashMap a b -> ()
liftRnf2 a -> ()
_ b -> ()
_ HashMap a b
Empty = ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (BitmapIndexed Bitmap
_ Array (HashMap a b)
ary) = forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf (forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (HashMap a b)
ary
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Leaf Bitmap
_ Leaf a b
l) = forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 Leaf a b
l
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Full Array (HashMap a b)
ary) = forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf (forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (HashMap a b)
ary
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Collision Bitmap
_ Array (Leaf a b)
ary) = forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf (forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (Leaf a b)
ary
instance Functor (HashMap k) where
fmap :: forall a b. (a -> b) -> HashMap k a -> HashMap k b
fmap = forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map
instance Foldable.Foldable (HashMap k) where
foldMap :: forall m a. Monoid m => (a -> m) -> HashMap k a -> m
foldMap a -> m
f = forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey (\ k
_k a
v -> a -> m
f a
v)
{-# INLINE foldMap #-}
foldr :: forall a b. (a -> b -> b) -> b -> HashMap k a -> b
foldr = forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr
{-# INLINE foldr #-}
foldl :: forall b a. (b -> a -> b) -> b -> HashMap k a -> b
foldl = forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl
{-# INLINE foldl #-}
foldr' :: forall a b. (a -> b -> b) -> b -> HashMap k a -> b
foldr' = forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr'
{-# INLINE foldr' #-}
foldl' :: forall b a. (b -> a -> b) -> b -> HashMap k a -> b
foldl' = forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl'
{-# INLINE foldl' #-}
null :: forall a. HashMap k a -> Bool
null = forall k a. HashMap k a -> Bool
null
{-# INLINE null #-}
length :: forall a. HashMap k a -> Int
length = forall k a. HashMap k a -> Int
size
{-# INLINE length #-}
instance Bifoldable HashMap where
bifoldMap :: forall m a b. Monoid m => (a -> m) -> (b -> m) -> HashMap a b -> m
bifoldMap a -> m
f b -> m
g = forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey (\ a
k b
v -> a -> m
f a
k forall a. Monoid a => a -> a -> a
`mappend` b -> m
g b
v)
{-# INLINE bifoldMap #-}
bifoldr :: forall a c b.
(a -> c -> c) -> (b -> c -> c) -> c -> HashMap a b -> c
bifoldr a -> c -> c
f b -> c -> c
g = forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (\ a
k b
v c
acc -> a
k a -> c -> c
`f` (b
v b -> c -> c
`g` c
acc))
{-# INLINE bifoldr #-}
bifoldl :: forall c a b.
(c -> a -> c) -> (c -> b -> c) -> c -> HashMap a b -> c
bifoldl c -> a -> c
f c -> b -> c
g = forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey (\ c
acc a
k b
v -> (c
acc c -> a -> c
`f` a
k) c -> b -> c
`g` b
v)
{-# INLINE bifoldl #-}
instance (Eq k, Hashable k) => Semigroup (HashMap k v) where
<> :: HashMap k v -> HashMap k v -> HashMap k v
(<>) = forall k v.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k v -> HashMap k v
union
{-# INLINE (<>) #-}
stimes :: forall b. Integral b => b -> HashMap k v -> HashMap k v
stimes = forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
{-# INLINE stimes #-}
instance (Eq k, Hashable k) => Monoid (HashMap k v) where
mempty :: HashMap k v
mempty = forall k v. HashMap k v
empty
{-# INLINE mempty #-}
mappend :: HashMap k v -> HashMap k v -> HashMap k v
mappend = forall a. Semigroup a => a -> a -> a
(<>)
{-# INLINE mappend #-}
instance (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) where
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z HashMap k v
m = forall g. g -> c g
z forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList forall d b. Data d => c (d -> b) -> d -> c b
`f` forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
m
toConstr :: HashMap k v -> Constr
toConstr HashMap k v
_ = Constr
fromListConstr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HashMap k v)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
Data.constrIndex Constr
c of
Int
1 -> forall b r. Data b => c (b -> r) -> c r
k (forall r. r -> c r
z forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList)
Int
_ -> forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: HashMap k v -> DataType
dataTypeOf HashMap k v
_ = DataType
hashMapDataType
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (HashMap k v))
dataCast1 forall d. Data d => c (t d)
f = forall {k1} {k2} (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
(a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
Data.gcast1 forall d. Data d => c (t d)
f
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HashMap k v))
dataCast2 forall d e. (Data d, Data e) => c (t d e)
f = forall {k1} {k2} {k3} (c :: k1 -> *) (t :: k2 -> k3 -> k1)
(t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
Data.gcast2 forall d e. (Data d, Data e) => c (t d e)
f
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
Data.mkConstr DataType
hashMapDataType [Char]
"fromList" [] Fixity
Data.Prefix
hashMapDataType :: DataType
hashMapDataType :: DataType
hashMapDataType = [Char] -> [Constr] -> DataType
Data.mkDataType [Char]
"Data.HashMap.Internal.HashMap" [Constr
fromListConstr]
type Hash = Word
type Bitmap = Word
type Shift = Int
instance Show2 HashMap where
liftShowsPrec2 :: forall a b.
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> HashMap a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv Int
d HashMap a b
m =
forall a. (Int -> a -> ShowS) -> [Char] -> Int -> a -> ShowS
FC.showsUnaryWith (forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> (a, b) -> ShowS
sp [(a, b)] -> ShowS
sl) [Char]
"fromList" Int
d (forall k v. HashMap k v -> [(k, v)]
toList HashMap a b
m)
where
sp :: Int -> (a, b) -> ShowS
sp = forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv
sl :: [(a, b)] -> ShowS
sl = forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> [f a b]
-> ShowS
liftShowList2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv
instance Show k => Show1 (HashMap k) where
liftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> HashMap k a -> ShowS
liftShowsPrec = forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 forall a. Show a => Int -> a -> ShowS
showsPrec forall a. Show a => [a] -> ShowS
showList
instance (Eq k, Hashable k, Read k) => Read1 (HashMap k) where
liftReadsPrec :: forall a.
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (HashMap k a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = forall a. ([Char] -> ReadS a) -> Int -> ReadS a
FC.readsData forall a b. (a -> b) -> a -> b
$
forall a t.
(Int -> ReadS a) -> [Char] -> (a -> t) -> [Char] -> ReadS t
FC.readsUnaryWith (forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (k, a)
rp' ReadS [(k, a)]
rl') [Char]
"fromList" forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList
where
rp' :: Int -> ReadS (k, a)
rp' = forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl
rl' :: ReadS [(k, a)]
rl' = forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl
instance (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) where
readPrec :: ReadPrec (HashMap k e)
readPrec = forall a. ReadPrec a -> ReadPrec a
parens forall a b. (a -> b) -> a -> b
$ forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Read a => ReadPrec a
readPrec
readListPrec :: ReadPrec [HashMap k e]
readListPrec = forall a. Read a => ReadPrec [a]
readListPrecDefault
instance (Show k, Show v) => Show (HashMap k v) where
showsPrec :: Int -> HashMap k v -> ShowS
showsPrec Int
d HashMap k v
m = Bool -> ShowS -> ShowS
showParen (Int
d forall a. Ord a => a -> a -> Bool
> Int
10) forall a b. (a -> b) -> a -> b
$
[Char] -> ShowS
showString [Char]
"fromList " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => a -> ShowS
shows (forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
m)
instance Traversable (HashMap k) where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> HashMap k a -> f (HashMap k b)
traverse a -> f b
f = forall (f :: * -> *) k v1 v2.
Applicative f =>
(k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
traverseWithKey (forall a b. a -> b -> a
const a -> f b
f)
{-# INLINABLE traverse #-}
instance Eq2 HashMap where
liftEq2 :: forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
liftEq2 = forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
equal2
instance Eq k => Eq1 (HashMap k) where
liftEq :: forall a b. (a -> b -> Bool) -> HashMap k a -> HashMap k b -> Bool
liftEq = forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1
instance (Eq k, Eq v) => Eq (HashMap k v) where
== :: HashMap k v -> HashMap k v -> Bool
(==) = forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1 forall a. Eq a => a -> a -> Bool
(==)
equal1 :: Eq k
=> (v -> v' -> Bool)
-> HashMap k v -> HashMap k v' -> Bool
equal1 :: forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1 v -> v' -> Bool
eq = HashMap k v -> HashMap k v' -> Bool
go
where
go :: HashMap k v -> HashMap k v' -> Bool
go HashMap k v
Empty HashMap k v'
Empty = Bool
True
go (BitmapIndexed Bitmap
bm1 Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
bm2 Array (HashMap k v')
ary2)
= Bitmap
bm1 forall a. Eq a => a -> a -> Bool
== Bitmap
bm2 Bool -> Bool -> Bool
&& forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Leaf Bitmap
h1 Leaf k v
l1) (Leaf Bitmap
h2 Leaf k v'
l2) = Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k v' -> Bool
leafEq Leaf k v
l1 Leaf k v'
l2
go (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v')
ary2) = forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1) (Collision Bitmap
h2 Array (Leaf k v')
ary2)
= Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k v' -> Bool
leafEq (forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (forall a. Array a -> [a]
A.toList Array (Leaf k v')
ary2)
go HashMap k v
_ HashMap k v'
_ = Bool
False
leafEq :: Leaf k v -> Leaf k v' -> Bool
leafEq (L k
k1 v
v1) (L k
k2 v'
v2) = k
k1 forall a. Eq a => a -> a -> Bool
== k
k2 Bool -> Bool -> Bool
&& v -> v' -> Bool
eq v
v1 v'
v2
equal2 :: (k -> k' -> Bool) -> (v -> v' -> Bool)
-> HashMap k v -> HashMap k' v' -> Bool
equal2 :: forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
equal2 k -> k' -> Bool
eqk v -> v' -> Bool
eqv HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Bool
go (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Bool
go (Leaf Bitmap
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Bitmap
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
| Bitmap
k1 forall a. Eq a => a -> a -> Bool
== Bitmap
k2 Bool -> Bool -> Bool
&&
Leaf k v -> Leaf k' v' -> Bool
leafEq Leaf k v
l1 Leaf k' v'
l2
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Bitmap
k1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Bitmap
k2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
| Bitmap
k1 forall a. Eq a => a -> a -> Bool
== Bitmap
k2 Bool -> Bool -> Bool
&&
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1 forall a. Eq a => a -> a -> Bool
== forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2 Bool -> Bool -> Bool
&&
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k' v' -> Bool
leafEq (forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2)
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go [] [] = Bool
True
go [HashMap k v]
_ [HashMap k' v']
_ = Bool
False
leafEq :: Leaf k v -> Leaf k' v' -> Bool
leafEq (L k
k v
v) (L k'
k' v'
v') = k -> k' -> Bool
eqk k
k k'
k' Bool -> Bool -> Bool
&& v -> v' -> Bool
eqv v
v v'
v'
instance Ord2 HashMap where
liftCompare2 :: forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
liftCompare2 = forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp
instance Ord k => Ord1 (HashMap k) where
liftCompare :: forall a b.
(a -> b -> Ordering) -> HashMap k a -> HashMap k b -> Ordering
liftCompare = forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp forall a. Ord a => a -> a -> Ordering
compare
instance (Ord k, Ord v) => Ord (HashMap k v) where
compare :: HashMap k v -> HashMap k v -> Ordering
compare = forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp forall a. Ord a => a -> a -> Ordering
compare forall a. Ord a => a -> a -> Ordering
compare
cmp :: (k -> k' -> Ordering) -> (v -> v' -> Ordering)
-> HashMap k v -> HashMap k' v' -> Ordering
cmp :: forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp k -> k' -> Ordering
cmpk v -> v' -> Ordering
cmpv HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Ordering
go (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Ordering
go (Leaf Bitmap
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Bitmap
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
= forall a. Ord a => a -> a -> Ordering
compare Bitmap
k1 Bitmap
k2 forall a. Monoid a => a -> a -> a
`mappend`
Leaf k v -> Leaf k' v' -> Ordering
leafCompare Leaf k v
l1 Leaf k' v'
l2 forall a. Monoid a => a -> a -> a
`mappend`
[HashMap k v] -> [HashMap k' v'] -> Ordering
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Bitmap
k1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Bitmap
k2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
= forall a. Ord a => a -> a -> Ordering
compare Bitmap
k1 Bitmap
k2 forall a. Monoid a => a -> a -> a
`mappend`
forall a. Ord a => a -> a -> Ordering
compare (forall a. Array a -> Int
A.length Array (Leaf k v)
ary1) (forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2) forall a. Monoid a => a -> a -> a
`mappend`
forall a b. (a -> b -> Ordering) -> [a] -> [b] -> Ordering
unorderedCompare Leaf k v -> Leaf k' v' -> Ordering
leafCompare (forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2) forall a. Monoid a => a -> a -> a
`mappend`
[HashMap k v] -> [HashMap k' v'] -> Ordering
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Leaf Bitmap
_ Leaf k v
_ : [HashMap k v]
_) (Collision Bitmap
_ Array (Leaf k' v')
_ : [HashMap k' v']
_) = Ordering
LT
go (Collision Bitmap
_ Array (Leaf k v)
_ : [HashMap k v]
_) (Leaf Bitmap
_ Leaf k' v'
_ : [HashMap k' v']
_) = Ordering
GT
go [] [] = Ordering
EQ
go [] [HashMap k' v']
_ = Ordering
LT
go [HashMap k v]
_ [] = Ordering
GT
go [HashMap k v]
_ [HashMap k' v']
_ = forall a. HasCallStack => [Char] -> a
error [Char]
"cmp: Should never happen, leavesAndCollisions includes non Leaf / Collision"
leafCompare :: Leaf k v -> Leaf k' v' -> Ordering
leafCompare (L k
k v
v) (L k'
k' v'
v') = k -> k' -> Ordering
cmpk k
k k'
k' forall a. Monoid a => a -> a -> a
`mappend` v -> v' -> Ordering
cmpv v
v v'
v'
equalKeys1 :: (k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 :: forall k k' v v'.
(k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 k -> k' -> Bool
eq HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Bool
go (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Bool
go (Leaf Bitmap
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Bitmap
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
| Bitmap
k1 forall a. Eq a => a -> a -> Bool
== Bitmap
k2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k' v' -> Bool
leafEq Leaf k v
l1 Leaf k' v'
l2
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Bitmap
k1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Bitmap
k2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
| Bitmap
k1 forall a. Eq a => a -> a -> Bool
== Bitmap
k2 Bool -> Bool -> Bool
&& forall a. Array a -> Int
A.length Array (Leaf k v)
ary1 forall a. Eq a => a -> a -> Bool
== forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2 Bool -> Bool -> Bool
&&
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k' v' -> Bool
leafEq (forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2)
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go [] [] = Bool
True
go [HashMap k v]
_ [HashMap k' v']
_ = Bool
False
leafEq :: Leaf k v -> Leaf k' v' -> Bool
leafEq (L k
k v
_) (L k'
k' v'
_) = k -> k' -> Bool
eq k
k k'
k'
equalKeys :: Eq k => HashMap k v -> HashMap k v' -> Bool
equalKeys :: forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
equalKeys = forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go
where
go :: Eq k => HashMap k v -> HashMap k v' -> Bool
go :: forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go HashMap k v
Empty HashMap k v'
Empty = Bool
True
go (BitmapIndexed Bitmap
bm1 Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
bm2 Array (HashMap k v')
ary2)
= Bitmap
bm1 forall a. Eq a => a -> a -> Bool
== Bitmap
bm2 Bool -> Bool -> Bool
&& forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Leaf Bitmap
h1 Leaf k v
l1) (Leaf Bitmap
h2 Leaf k v'
l2) = Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& forall {a} {v} {v}. Eq a => Leaf a v -> Leaf a v -> Bool
leafEq Leaf k v
l1 Leaf k v'
l2
go (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v')
ary2) = forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1) (Collision Bitmap
h2 Array (Leaf k v')
ary2)
= Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy forall {a} {v} {v}. Eq a => Leaf a v -> Leaf a v -> Bool
leafEq (forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (forall a. Array a -> [a]
A.toList Array (Leaf k v')
ary2)
go HashMap k v
_ HashMap k v'
_ = Bool
False
leafEq :: Leaf a v -> Leaf a v -> Bool
leafEq (L a
k1 v
_) (L a
k2 v
_) = a
k1 forall a. Eq a => a -> a -> Bool
== a
k2
instance Hashable2 HashMap where
liftHashWithSalt2 :: forall a b.
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> HashMap a b -> Int
liftHashWithSalt2 Int -> a -> Int
hk Int -> b -> Int
hv Int
salt HashMap a b
hm = Int -> [HashMap a b] -> Int
go Int
salt (forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap a b
hm [])
where
go :: Int -> [HashMap a b] -> Int
go Int
s [] = Int
s
go Int
s (Leaf Bitmap
_ Leaf a b
l : [HashMap a b]
tl)
= Int
s Int -> Leaf a b -> Int
`hashLeafWithSalt` Leaf a b
l Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
go Int
s (Collision Bitmap
h Array (Leaf a b)
a : [HashMap a b]
tl)
= (Int
s forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Bitmap
h) Int -> Array (Leaf a b) -> Int
`hashCollisionWithSalt` Array (Leaf a b)
a Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
go Int
s (HashMap a b
_ : [HashMap a b]
tl) = Int
s Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
hashLeafWithSalt :: Int -> Leaf a b -> Int
hashLeafWithSalt Int
s (L a
k b
v) = (Int
s Int -> a -> Int
`hk` a
k) Int -> b -> Int
`hv` b
v
hashCollisionWithSalt :: Int -> Array (Leaf a b) -> Int
hashCollisionWithSalt Int
s
= forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' forall a. Hashable a => Int -> a -> Int
H.hashWithSalt Int
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Array (Leaf a b) -> [Int]
arrayHashesSorted Int
s
arrayHashesSorted :: Int -> Array (Leaf a b) -> [Int]
arrayHashesSorted Int
s = forall a. Ord a => [a] -> [a]
List.sort forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
List.map (Int -> Leaf a b -> Int
hashLeafWithSalt Int
s) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Array a -> [a]
A.toList
instance (Hashable k) => Hashable1 (HashMap k) where
liftHashWithSalt :: forall a. (Int -> a -> Int) -> Int -> HashMap k a -> Int
liftHashWithSalt = forall (t :: * -> * -> *) a b.
Hashable2 t =>
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> t a b -> Int
H.liftHashWithSalt2 forall a. Hashable a => Int -> a -> Int
H.hashWithSalt
instance (Hashable k, Hashable v) => Hashable (HashMap k v) where
hashWithSalt :: Int -> HashMap k v -> Int
hashWithSalt Int
salt HashMap k v
hm = Int -> HashMap k v -> Int
go Int
salt HashMap k v
hm
where
go :: Int -> HashMap k v -> Int
go :: Int -> HashMap k v -> Int
go Int
s HashMap k v
Empty = Int
s
go Int
s (BitmapIndexed Bitmap
_ Array (HashMap k v)
a) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' Int -> HashMap k v -> Int
go Int
s Array (HashMap k v)
a
go Int
s (Leaf Bitmap
h (L k
_ v
v))
= Int
s forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Bitmap
h forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` v
v
go Int
s (Full Array (HashMap k v)
a) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' Int -> HashMap k v -> Int
go Int
s Array (HashMap k v)
a
go Int
s (Collision Bitmap
h Array (Leaf k v)
a)
= (Int
s forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Bitmap
h) Int -> Array (Leaf k v) -> Int
`hashCollisionWithSalt` Array (Leaf k v)
a
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt Int
s (L k
k v
v) = Int
s forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` k
k forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` v
v
hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
hashCollisionWithSalt :: Int -> Array (Leaf k v) -> Int
hashCollisionWithSalt Int
s
= forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' forall a. Hashable a => Int -> a -> Int
H.hashWithSalt Int
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Array (Leaf k v) -> [Int]
arrayHashesSorted Int
s
arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
arrayHashesSorted :: Int -> Array (Leaf k v) -> [Int]
arrayHashesSorted Int
s = forall a. Ord a => [a] -> [a]
List.sort forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
List.map (Int -> Leaf k v -> Int
hashLeafWithSalt Int
s) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Array a -> [a]
A.toList
leavesAndCollisions :: HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions :: forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) [HashMap k v]
a = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions [HashMap k v]
a Array (HashMap k v)
ary
leavesAndCollisions (Full Array (HashMap k v)
ary) [HashMap k v]
a = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions [HashMap k v]
a Array (HashMap k v)
ary
leavesAndCollisions l :: HashMap k v
l@(Leaf Bitmap
_ Leaf k v
_) [HashMap k v]
a = HashMap k v
l forall a. a -> [a] -> [a]
: [HashMap k v]
a
leavesAndCollisions c :: HashMap k v
c@(Collision Bitmap
_ Array (Leaf k v)
_) [HashMap k v]
a = HashMap k v
c forall a. a -> [a] -> [a]
: [HashMap k v]
a
leavesAndCollisions HashMap k v
Empty [HashMap k v]
a = [HashMap k v]
a
isLeafOrCollision :: HashMap k v -> Bool
isLeafOrCollision :: forall k a. HashMap k a -> Bool
isLeafOrCollision (Leaf Bitmap
_ Leaf k v
_) = Bool
True
isLeafOrCollision (Collision Bitmap
_ Array (Leaf k v)
_) = Bool
True
isLeafOrCollision HashMap k v
_ = Bool
False
empty :: HashMap k v
empty :: forall k v. HashMap k v
empty = forall k v. HashMap k v
Empty
singleton :: (Hashable k) => k -> v -> HashMap k v
singleton :: forall k v. Hashable k => k -> v -> HashMap k v
singleton k
k v
v = forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf (forall a. Hashable a => a -> Bitmap
hash k
k) (forall k v. k -> v -> Leaf k v
L k
k v
v)
null :: HashMap k v -> Bool
null :: forall k a. HashMap k a -> Bool
null HashMap k v
Empty = Bool
True
null HashMap k v
_ = Bool
False
size :: HashMap k v -> Int
size :: forall k a. HashMap k a -> Int
size HashMap k v
t = forall {k} {v}. HashMap k v -> Int -> Int
go HashMap k v
t Int
0
where
go :: HashMap k v -> Int -> Int
go HashMap k v
Empty !Int
n = Int
n
go (Leaf Bitmap
_ Leaf k v
_) Int
n = Int
n forall a. Num a => a -> a -> a
+ Int
1
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) Int
n = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> Int -> Int
go) Int
n Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) Int
n = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> Int -> Int
go) Int
n Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) Int
n = Int
n forall a. Num a => a -> a -> a
+ forall a. Array a -> Int
A.length Array (Leaf k v)
ary
member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool
member :: forall k a. (Eq k, Hashable k) => k -> HashMap k a -> Bool
member k
k HashMap k a
m = case forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k a
m of
Maybe a
Nothing -> Bool
False
Just a
_ -> Bool
True
{-# INLINABLE member #-}
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup :: forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m = case forall k v.
(Eq k, Hashable k) =>
k -> HashMap k v -> (# (# #) | v #)
lookup# k
k HashMap k v
m of
(# (# #) | #) -> forall a. Maybe a
Nothing
(# | v
a #) -> forall a. a -> Maybe a
Just v
a
{-# INLINE lookup #-}
lookup# :: (Eq k, Hashable k) => k -> HashMap k v -> (# (# #) | v #)
lookup# :: forall k v.
(Eq k, Hashable k) =>
k -> HashMap k v -> (# (# #) | v #)
lookup# k
k HashMap k v
m = forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> (# (# #) | #)) (\v
v Int
_i -> (# | v
v #)) (forall a. Hashable a => a -> Bitmap
hash k
k) k
k Int
0 HashMap k v
m
{-# INLINABLE lookup# #-}
lookup' :: Eq k => Hash -> k -> HashMap k v -> Maybe v
lookup' :: forall k v. Eq k => Bitmap -> k -> HashMap k v -> Maybe v
lookup' Bitmap
h k
k HashMap k v
m = case forall k v.
Eq k =>
Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Bitmap
h k
k HashMap k v
m of
(# (# #) | #) -> forall a. Maybe a
Nothing
(# | (# v
a, Int#
_i #) #) -> forall a. a -> Maybe a
Just v
a
{-# INLINE lookup' #-}
data LookupRes a = Absent | Present a !Int
lookupRecordCollision :: Eq k => Hash -> k -> HashMap k v -> LookupRes v
lookupRecordCollision :: forall k v. Eq k => Bitmap -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Bitmap
h k
k HashMap k v
m = case forall k v.
Eq k =>
Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Bitmap
h k
k HashMap k v
m of
(# (# #) | #) -> forall a. LookupRes a
Absent
(# | (# v
a, Int#
i #) #) -> forall a. a -> Int -> LookupRes a
Present v
a (Int# -> Int
I# Int#
i)
{-# INLINE lookupRecordCollision #-}
lookupRecordCollision# :: Eq k => Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# :: forall k v.
Eq k =>
Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Bitmap
h k
k HashMap k v
m =
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> (# (# #) | #)) (\v
v (I# Int#
i) -> (# | (# v
v, Int#
i #) #)) Bitmap
h k
k Int
0 HashMap k v
m
{-# INLINABLE lookupRecordCollision# #-}
lookupCont ::
forall rep (r :: TYPE rep) k v.
Eq k
=> ((# #) -> r)
-> (v -> Int -> r)
-> Hash
-> k
-> Int
-> HashMap k v -> r
lookupCont :: forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (# #) -> r
absent v -> Int -> r
present !Bitmap
h0 !k
k0 !Int
s0 !HashMap k v
m0 = Eq k => Bitmap -> k -> Int -> HashMap k v -> r
go Bitmap
h0 k
k0 Int
s0 HashMap k v
m0
where
go :: Eq k => Hash -> k -> Int -> HashMap k v -> r
go :: Eq k => Bitmap -> k -> Int -> HashMap k v -> r
go !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = (# #) -> r
absent (# #)
go Bitmap
h k
k Int
_ (Leaf Bitmap
hx (L k
kx v
x))
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hx Bool -> Bool -> Bool
&& k
k forall a. Eq a => a -> a -> Bool
== k
kx = v -> Int -> r
present v
x (-Int
1)
| Bool
otherwise = (# #) -> r
absent (# #)
go Bitmap
h k
k Int
s (BitmapIndexed Bitmap
b Array (HashMap k v)
v)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 = (# #) -> r
absent (# #)
| Bool
otherwise =
Eq k => Bitmap -> k -> Int -> HashMap k v -> r
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) (forall a. Array a -> Int -> a
A.index Array (HashMap k v)
v (Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m))
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
go Bitmap
h k
k Int
s (Full Array (HashMap k v)
v) =
Eq k => Bitmap -> k -> Int -> HashMap k v -> r
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) (forall a. Array a -> Int -> a
A.index Array (HashMap k v)
v (Bitmap -> Int -> Int
index Bitmap
h Int
s))
go Bitmap
h k
k Int
_ (Collision Bitmap
hx Array (Leaf k v)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hx = forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (# #) -> r
absent v -> Int -> r
present k
k Array (Leaf k v)
v
| Bool
otherwise = (# #) -> r
absent (# #)
{-# INLINE lookupCont #-}
(!?) :: (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
!? :: forall k v. (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
(!?) HashMap k v
m k
k = forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m
{-# INLINE (!?) #-}
findWithDefault :: (Eq k, Hashable k)
=> v
-> k -> HashMap k v -> v
findWithDefault :: forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
findWithDefault v
def k
k HashMap k v
t = case forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
t of
Just v
v -> v
v
Maybe v
_ -> v
def
{-# INLINABLE findWithDefault #-}
lookupDefault :: (Eq k, Hashable k)
=> v
-> k -> HashMap k v -> v
lookupDefault :: forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
lookupDefault = forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
findWithDefault
{-# INLINE lookupDefault #-}
(!) :: (Eq k, Hashable k, HasCallStack) => HashMap k v -> k -> v
! :: forall k v.
(Eq k, Hashable k, HasCallStack) =>
HashMap k v -> k -> v
(!) HashMap k v
m k
k = case forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m of
Just v
v -> v
v
Maybe v
Nothing -> forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.Internal.(!): key not found"
{-# INLINABLE (!) #-}
infixl 9 !
collision :: Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision :: forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h !Leaf k v
e1 !Leaf k v
e2 =
let v :: Array (Leaf k v)
v = forall e. (forall s. ST s (MArray s e)) -> Array e
A.run forall a b. (a -> b) -> a -> b
$ do MArray s (Leaf k v)
mary <- forall a s. Int -> a -> ST s (MArray s a)
A.new Int
2 Leaf k v
e1
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
1 Leaf k v
e2
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
in forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v)
v
{-# INLINE collision #-}
bitmapIndexedOrFull :: Bitmap -> A.Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull :: forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b !Array (HashMap k v)
ary
| Bitmap
b forall a. Eq a => a -> a -> Bool
== Bitmap
fullNodeMask = forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary
| Bool
otherwise = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v)
ary
{-# INLINE bitmapIndexedOrFull #-}
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
insert :: forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
insert k
k v
v HashMap k v
m = forall k v. Eq k => Bitmap -> k -> v -> HashMap k v -> HashMap k v
insert' (forall a. Hashable a => a -> Bitmap
hash k
k) k
k v
v HashMap k v
m
{-# INLINABLE insert #-}
insert' :: Eq k => Hash -> k -> v -> HashMap k v -> HashMap k v
insert' :: forall k v. Eq k => Bitmap -> k -> v -> HashMap k v -> HashMap k v
insert' Bitmap
h0 k
k0 v
v0 HashMap k v
m0 = forall {t} {t}.
Eq t =>
Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h0 k
k0 v
v0 Int
0 HashMap k v
m0
where
go :: Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go !Bitmap
h !t
k t
x !Int
_ HashMap t t
Empty = forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Leaf Bitmap
hy l :: Leaf t t
l@(L t
ky t
y))
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h = if t
ky forall a. Eq a => a -> a -> Bool
== t
k
then if t
x forall a. a -> a -> Bool
`ptrEq` t
y
then HashMap t t
t
else forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
else forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf t t
l (forall k v. k -> v -> Leaf k v
L t
k t
x)
| Bool
otherwise = forall a. (forall s. ST s a) -> a
runST (forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h t
k t
x Bitmap
hy HashMap t t
t)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let !ary' :: Array (HashMap t t)
ary' = forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap t t)
ary Int
i forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise =
let !st :: HashMap t t
st = forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
in if HashMap t t
st' forall a. a -> a -> Bool
`ptrEq` HashMap t t
st
then HashMap t t
t
else forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap t t)
ary Int
i HashMap t t
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Full Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
in if HashMap t t
st' forall a. a -> a -> Bool
`ptrEq` HashMap t t
st
then HashMap t t
t
else forall k v. Array (HashMap k v) -> HashMap k v
Full (forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap t t)
ary Int
i HashMap t t
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Collision Bitmap
hy Array (Leaf t t)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith (\t
a t
_ -> (# t
a #)) t
k t
x Array (Leaf t t)
v)
| Bool
otherwise = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x Int
s forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (forall a. a -> Array a
A.singleton HashMap t t
t)
{-# INLINABLE insert' #-}
insertNewKey :: Hash -> k -> v -> HashMap k v -> HashMap k v
insertNewKey :: forall k v. Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertNewKey !Bitmap
h0 !k
k0 v
x0 !HashMap k v
m0 = forall {t} {t}.
Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h0 k
k0 v
x0 Int
0 HashMap k v
m0
where
go :: Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go !Bitmap
h !t
k t
x !Int
_ HashMap t t
Empty = forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Leaf Bitmap
hy Leaf t t
l)
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h = forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf t t
l (forall k v. k -> v -> Leaf k v
L t
k t
x)
| Bool
otherwise = forall a. (forall s. ST s a) -> a
runST (forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h t
k t
x Bitmap
hy HashMap t t
t)
go Bitmap
h t
k t
x Int
s (BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let !ary' :: Array (HashMap t t)
ary' = forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap t t)
ary Int
i forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise =
let !st :: HashMap t t
st = forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap t t)
ary Int
i HashMap t t
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h t
k t
x Int
s (Full Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
in forall k v. Array (HashMap k v) -> HashMap k v
Full (forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap t t)
ary Int
i HashMap t t
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Collision Bitmap
hy Array (Leaf t t)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall a. Array a -> a -> Array a
A.snoc Array (Leaf t t)
v (forall k v. k -> v -> Leaf k v
L t
k t
x))
| Bool
otherwise =
Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x Int
s forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (forall a. a -> Array a
A.singleton HashMap t t
t)
{-# NOINLINE insertNewKey #-}
insertKeyExists :: Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists :: forall k v. Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists !Int
collPos0 !Bitmap
h0 !k
k0 v
x0 !HashMap k v
m0 = forall {t} {t}.
Int -> Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Int
collPos0 Bitmap
h0 k
k0 v
x0 Int
0 HashMap k v
m0
where
go :: Int -> Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go !Int
_collPos !Bitmap
h !t
k t
x !Int
_s (Leaf Bitmap
_hy Leaf t t
_kx)
= forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
go Int
collPos Bitmap
h t
k t
x Int
s (BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let !ary' :: Array (HashMap t t)
ary' = forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap t t)
ary Int
i forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise =
let !st :: HashMap t t
st = forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Int -> Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Int
collPos Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap t t)
ary Int
i HashMap t t
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Int
collPos Bitmap
h t
k t
x Int
s (Full Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Int -> Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Int
collPos Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
in forall k v. Array (HashMap k v) -> HashMap k v
Full (forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap t t)
ary Int
i HashMap t t
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Int
collPos Bitmap
h t
k t
x Int
_s (Collision Bitmap
_hy Array (Leaf t t)
v)
| Int
collPos forall a. Ord a => a -> a -> Bool
>= Int
0 = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall k v. Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
setAtPosition Int
collPos t
k t
x Array (Leaf t t)
v)
| Bool
otherwise = forall k v. HashMap k v
Empty
go Int
_ Bitmap
_ t
_ t
_ Int
_ HashMap t t
Empty = forall k v. HashMap k v
Empty
{-# NOINLINE insertKeyExists #-}
setAtPosition :: Int -> k -> v -> A.Array (Leaf k v) -> A.Array (Leaf k v)
setAtPosition :: forall k v. Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
setAtPosition Int
i k
k v
x Array (Leaf k v)
ary = forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (forall k v. k -> v -> Leaf k v
L k
k v
x)
{-# INLINE setAtPosition #-}
unsafeInsert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
unsafeInsert :: forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k0 v
v0 HashMap k v
m0 = forall a. (forall s. ST s a) -> a
runST (forall {t} {t} {s}.
Eq t =>
Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h0 k
k0 v
v0 Int
0 HashMap k v
m0)
where
h0 :: Bitmap
h0 = forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go !Bitmap
h !t
k t
x !Int
_ HashMap t t
Empty = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Leaf Bitmap
hy l :: Leaf t t
l@(L t
ky t
y))
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h = if t
ky forall a. Eq a => a -> a -> Bool
== t
k
then if t
x forall a. a -> a -> Bool
`ptrEq` t
y
then forall (m :: * -> *) a. Monad m => a -> m a
return HashMap t t
t
else forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
else forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf t t
l (forall k v. k -> v -> Leaf k v
L t
k t
x)
| Bool
otherwise = forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h t
k t
x Bitmap
hy HashMap t t
t
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 = do
Array (HashMap t t)
ary' <- forall e s. Array e -> Int -> e -> ST s (Array e)
A.insertM Array (HashMap t t)
ary Int
i forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L t
k t
x)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise = do
HashMap t t
st <- forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap t t)
ary Int
i
HashMap t t
st' <- Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap t t)
ary Int
i HashMap t t
st'
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap t t
t
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Full Array (HashMap t t)
ary) = do
HashMap t t
st <- forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap t t)
ary Int
i
HashMap t t
st' <- Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h t
k t
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap t t
st
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap t t)
ary Int
i HashMap t t
st'
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap t t
t
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Collision Bitmap
hy Array (Leaf t t)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith (\t
a t
_ -> (# t
a #)) t
k t
x Array (Leaf t t)
v)
| Bool
otherwise = Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h t
k t
x Int
s forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (forall a. a -> Array a
A.singleton HashMap t t
t)
{-# INLINABLE unsafeInsert #-}
two :: Shift -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two :: forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two = forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
go
where
go :: Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
go Int
s Bitmap
h1 k
k1 v
v1 Bitmap
h2 HashMap k v
t2
| Bitmap
bp1 forall a. Eq a => a -> a -> Bool
== Bitmap
bp2 = do
HashMap k v
st <- Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) Bitmap
h1 k
k1 v
v1 Bitmap
h2 HashMap k v
t2
Array (HashMap k v)
ary <- forall a s. a -> ST s (Array a)
A.singletonM HashMap k v
st
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bp1 Array (HashMap k v)
ary
| Bool
otherwise = do
MArray s (HashMap k v)
mary <- forall a s. Int -> a -> ST s (MArray s a)
A.new Int
2 forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 (forall k v. k -> v -> Leaf k v
L k
k1 v
v1)
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v)
mary Int
idx2 HashMap k v
t2
Array (HashMap k v)
ary <- forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s (HashMap k v)
mary
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
bp1 forall a. Bits a => a -> a -> a
.|. Bitmap
bp2) Array (HashMap k v)
ary
where
bp1 :: Bitmap
bp1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
bp2 :: Bitmap
bp2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
idx2 :: Int
idx2 | Bitmap -> Int -> Int
index Bitmap
h1 Int
s forall a. Ord a => a -> a -> Bool
< Bitmap -> Int -> Int
index Bitmap
h2 Int
s = Int
1
| Bool
otherwise = Int
0
{-# INLINE two #-}
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
insertWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
insertWith v -> v -> v
f k
k v
new HashMap k v
m = forall k v.
(Eq k, Hashable k) =>
v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
insertModifying v
new (\v
old -> (# v -> v -> v
f v
new v
old #)) k
k HashMap k v
m
{-# INLINE insertWith #-}
insertModifying :: (Eq k, Hashable k) => v -> (v -> (# v #)) -> k -> HashMap k v
-> HashMap k v
insertModifying :: forall k v.
(Eq k, Hashable k) =>
v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
insertModifying v
x v -> (# v #)
f k
k0 HashMap k v
m0 = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
!h0 :: Bitmap
h0 = forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Bitmap
h !k
k !Int
_ HashMap k v
Empty = forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
x)
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Leaf Bitmap
hy l :: Leaf k v
l@(L k
ky v
y))
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h = if k
ky forall a. Eq a => a -> a -> Bool
== k
k
then case v -> (# v #)
f v
y of
(# v
v' #) | forall a. a -> a -> Bool
ptrEq v
y v
v' -> HashMap k v
t
| Bool
otherwise -> forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
v')
else forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf k v
l (forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = forall a. (forall s. ST s a) -> a
runST (forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h k
k v
x Bitmap
hy HashMap k v
t)
go Bitmap
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary Int
i forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
x)
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap k v)
ary'
| Bool
otherwise =
let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v)
ary'
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy =
let !v' :: Array (Leaf k v)
v' = forall k v.
Eq k =>
v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
insertModifyingArr v
x v -> (# v #)
f k
k Array (Leaf k v)
v
in if forall a b. Array a -> Array b -> Bool
A.unsafeSameArray Array (Leaf k v)
v Array (Leaf k v)
v'
then HashMap k v
t
else forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v)
v'
| Bool
otherwise = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k Int
s forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE insertModifying #-}
insertModifyingArr :: Eq k => v -> (v -> (# v #)) -> k -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
insertModifyingArr :: forall k v.
Eq k =>
v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
insertModifyingArr v
x v -> (# v #)
f k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 Array (Leaf k v)
ary0 Int
0 (forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = forall a. Array a -> a -> Array a
A.snoc Array (Leaf k v)
ary forall a b. (a -> b) -> a -> b
$ forall k v. k -> v -> Leaf k v
L k
k v
x
| Bool
otherwise = case forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
y) | k
k forall a. Eq a => a -> a -> Bool
== k
kx -> case v -> (# v #)
f v
y of
(# v
y' #) -> if forall a. a -> a -> Bool
ptrEq v
y v
y'
then Array (Leaf k v)
ary
else forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k Array (Leaf k v)
ary (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINE insertModifyingArr #-}
unsafeInsertWith :: forall k v. (Eq k, Hashable k)
=> (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWith v -> v -> v
f k
k0 v
v0 HashMap k v
m0 = forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey (\k
_ v
a v
b -> (# v -> v -> v
f v
a v
b #)) k
k0 v
v0 HashMap k v
m0
{-# INLINABLE unsafeInsertWith #-}
unsafeInsertWithKey :: forall k v. (Eq k, Hashable k)
=> (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWithKey :: forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey k -> v -> v -> (# v #)
f k
k0 v
v0 HashMap k v
m0 = forall a. (forall s. ST s a) -> a
runST (forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h0 k
k0 v
v0 Int
0 HashMap k v
m0)
where
h0 :: Bitmap
h0 = forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Hash -> k -> v -> Shift -> HashMap k v -> ST s (HashMap k v)
go :: forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go !Bitmap
h !k
k v
x !Int
_ HashMap k v
Empty = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
x)
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(Leaf Bitmap
hy l :: Leaf k v
l@(L k
ky v
y))
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h = if k
ky forall a. Eq a => a -> a -> Bool
== k
k
then case k -> v -> v -> (# v #)
f k
k v
x v
y of
(# v
v #) -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
v)
else forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf k v
l (forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h k
k v
x Bitmap
hy HashMap k v
t
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 = do
Array (HashMap k v)
ary' <- forall e s. Array e -> Int -> e -> ST s (Array e)
A.insertM Array (HashMap k v)
ary Int
i forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
x)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap k v)
ary'
| Bool
otherwise = do
HashMap k v
st <- forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h k
k v
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) = do
HashMap k v
st <- forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h k
k v
x (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey k -> v -> v -> (# v #)
f k
k v
x Array (Leaf k v)
v)
| Bool
otherwise = forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h k
k v
x Int
s forall a b. (a -> b) -> a -> b
$ forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE unsafeInsertWithKey #-}
delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete :: forall k v. (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete k
k HashMap k v
m = forall k v. Eq k => Bitmap -> k -> HashMap k v -> HashMap k v
delete' (forall a. Hashable a => a -> Bitmap
hash k
k) k
k HashMap k v
m
{-# INLINABLE delete #-}
delete' :: Eq k => Hash -> k -> HashMap k v -> HashMap k v
delete' :: forall k v. Eq k => Bitmap -> k -> HashMap k v -> HashMap k v
delete' Bitmap
h0 k
k0 HashMap k v
m0 = forall {k} {v}.
Eq k =>
Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
go :: Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = forall k v. HashMap k v
Empty
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Leaf Bitmap
hy (L k
ky v
_))
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h Bool -> Bool -> Bool
&& k
ky forall a. Eq a => a -> a -> Bool
== k
k = forall k v. HashMap k v
Empty
| Bool
otherwise = HashMap k v
t
go Bitmap
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v
t
| Bool
otherwise =
let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in if HashMap k v
st' forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else case HashMap k v
st' of
HashMap k v
Empty | forall a. Array a -> Int
A.length Array (HashMap k v)
ary forall a. Eq a => a -> a -> Bool
== Int
1 -> forall k v. HashMap k v
Empty
| forall a. Array a -> Int
A.length Array (HashMap k v)
ary forall a. Eq a => a -> a -> Bool
== Int
2 ->
case (Int
i, forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
0, forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
1) of
(Int
0, HashMap k v
_, HashMap k v
l) | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int
1, HashMap k v
l, HashMap k v
_) | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int, HashMap k v, HashMap k v)
_ -> HashMap k v
bIndexed
| Bool
otherwise -> HashMap k v
bIndexed
where
bIndexed :: HashMap k v
bIndexed = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
b forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement Bitmap
m) (forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i)
HashMap k v
l | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l Bool -> Bool -> Bool
&& forall a. Array a -> Int
A.length Array (HashMap k v)
ary forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
l
HashMap k v
_ -> forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in if HashMap k v
st' forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else case HashMap k v
st' of
HashMap k v
Empty ->
let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i
bm :: Bitmap
bm = Bitmap
fullNodeMask forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement (Bitmap
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
i)
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bm Array (HashMap k v)
ary'
HashMap k v
_ -> forall k v. Array (HashMap k v) -> HashMap k v
Full (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy = case forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k Array (Leaf k v)
v of
Just Int
i
| forall a. Array a -> Int
A.length Array (Leaf k v)
v forall a. Eq a => a -> a -> Bool
== Int
2 ->
if Int
i forall a. Eq a => a -> a -> Bool
== Int
0
then forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
1)
else forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
0)
| Bool
otherwise -> forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall e. Array e -> Int -> Array e
A.delete Array (Leaf k v)
v Int
i)
Maybe Int
Nothing -> HashMap k v
t
| Bool
otherwise = HashMap k v
t
{-# INLINABLE delete' #-}
deleteKeyExists :: Int -> Hash -> k -> HashMap k v -> HashMap k v
deleteKeyExists :: forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
deleteKeyExists !Int
collPos0 !Bitmap
h0 !k
k0 !HashMap k v
m0 = forall k v. Int -> Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Int
collPos0 Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
go :: Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
go :: forall k v. Int -> Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Int
_collPos !Bitmap
_h !k
_k !Int
_s (Leaf Bitmap
_ Leaf k v
_) = forall k v. HashMap k v
Empty
go Int
collPos Bitmap
h k
k Int
s (BitmapIndexed Bitmap
b Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = forall k v. Int -> Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Int
collPos Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in case HashMap k v
st' of
HashMap k v
Empty | forall a. Array a -> Int
A.length Array (HashMap k v)
ary forall a. Eq a => a -> a -> Bool
== Int
1 -> forall k v. HashMap k v
Empty
| forall a. Array a -> Int
A.length Array (HashMap k v)
ary forall a. Eq a => a -> a -> Bool
== Int
2 ->
case (Int
i, forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
0, forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
1) of
(Int
0, HashMap k v
_, HashMap k v
l) | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int
1, HashMap k v
l, HashMap k v
_) | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int, HashMap k v, HashMap k v)
_ -> HashMap k v
bIndexed
| Bool
otherwise -> HashMap k v
bIndexed
where
bIndexed :: HashMap k v
bIndexed = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
b forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement Bitmap
m) (forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i)
HashMap k v
l | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l Bool -> Bool -> Bool
&& forall a. Array a -> Int
A.length Array (HashMap k v)
ary forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
l
HashMap k v
_ -> forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Int
collPos Bitmap
h k
k Int
s (Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = forall k v. Int -> Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Int
collPos Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in case HashMap k v
st' of
HashMap k v
Empty ->
let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i
bm :: Bitmap
bm = Bitmap
fullNodeMask forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement (Bitmap
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
i)
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bm Array (HashMap k v)
ary'
HashMap k v
_ -> forall k v. Array (HashMap k v) -> HashMap k v
Full (forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Int
collPos Bitmap
h k
_ Int
_ (Collision Bitmap
_hy Array (Leaf k v)
v)
| forall a. Array a -> Int
A.length Array (Leaf k v)
v forall a. Eq a => a -> a -> Bool
== Int
2
= if Int
collPos forall a. Eq a => a -> a -> Bool
== Int
0
then forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
1)
else forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
0)
| Bool
otherwise = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (forall e. Array e -> Int -> Array e
A.delete Array (Leaf k v)
v Int
collPos)
go !Int
_ !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = forall k v. HashMap k v
Empty
{-# NOINLINE deleteKeyExists #-}
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
adjust :: forall k v.
(Eq k, Hashable k) =>
(v -> v) -> k -> HashMap k v -> HashMap k v
adjust v -> v
f k
k HashMap k v
m = forall k v.
(Eq k, Hashable k) =>
(v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# (\v
v -> (# v -> v
f v
v #)) k
k HashMap k v
m
{-# INLINE adjust #-}
adjust# :: (Eq k, Hashable k) => (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# :: forall k v.
(Eq k, Hashable k) =>
(v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# v -> (# v #)
f k
k0 HashMap k v
m0 = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
h0 :: Bitmap
h0 = forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = forall k v. HashMap k v
Empty
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Leaf Bitmap
hy (L k
ky v
y))
| Bitmap
hy forall a. Eq a => a -> a -> Bool
== Bitmap
h Bool -> Bool -> Bool
&& k
ky forall a. Eq a => a -> a -> Bool
== k
k = case v -> (# v #)
f v
y of
(# v
y' #) | forall a. a -> a -> Bool
ptrEq v
y v
y' -> HashMap k v
t
| Bool
otherwise -> forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise = HashMap k v
t
go Bitmap
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v
t
| Bool
otherwise = let !st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v)
ary'
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
!st :: HashMap k v
st = forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h forall a. Eq a => a -> a -> Bool
== Bitmap
hy = let !v' :: Array (Leaf k v)
v' = forall k v.
Eq k =>
(v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
updateWith# v -> (# v #)
f k
k Array (Leaf k v)
v
in if forall a b. Array a -> Array b -> Bool
A.unsafeSameArray Array (Leaf k v)
v Array (Leaf k v)
v'
then HashMap k v
t
else forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v)
v'
| Bool
otherwise = HashMap k v
t
{-# INLINABLE adjust# #-}
update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update :: forall k a.
(Eq k, Hashable k) =>
(a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update a -> Maybe a
f = forall k v.
(Eq k, Hashable k) =>
(Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter (forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> Maybe a
f)
{-# INLINABLE update #-}
alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter :: forall k v.
(Eq k, Hashable k) =>
(Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter Maybe v -> Maybe v
f k
k HashMap k v
m =
case Maybe v -> Maybe v
f (forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m) of
Maybe v
Nothing -> forall k v. (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete k
k HashMap k v
m
Just v
v -> forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
insert k
k v
v HashMap k v
m
{-# INLINABLE alter #-}
alterF :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterF :: forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterF Maybe v -> f (Maybe v)
f = \ !k
k !HashMap k v
m ->
let
!h :: Bitmap
h = forall a. Hashable a => a -> Bitmap
hash k
k
mv :: Maybe v
mv = forall k v. Eq k => Bitmap -> k -> HashMap k v -> Maybe v
lookup' Bitmap
h k
k HashMap k v
m
in (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe v -> f (Maybe v)
f Maybe v
mv) forall a b. (a -> b) -> a -> b
$ \case
Maybe v
Nothing -> forall b a. b -> (a -> b) -> Maybe a -> b
maybe HashMap k v
m (forall a b. a -> b -> a
const (forall k v. Eq k => Bitmap -> k -> HashMap k v -> HashMap k v
delete' Bitmap
h k
k HashMap k v
m)) Maybe v
mv
Just v
v' -> forall k v. Eq k => Bitmap -> k -> v -> HashMap k v -> HashMap k v
insert' Bitmap
h k
k v
v' HashMap k v
m
{-# INLINABLE [0] alterF #-}
test_bottom :: a
test_bottom :: forall a. a
test_bottom = forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.alterF internal error: hit test_bottom"
bogus# :: (# #) -> (# a #)
bogus# :: forall a. (# #) -> (# a #)
bogus# (# #)
_ = forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.alterF internal error: hit bogus#"
{-# RULES
-- We probe the behavior of @f@ by applying it to Nothing and to
-- Just test_bottom. Based on the results, and how they relate to
-- each other, we choose the best implementation.
"alterFWeird" forall f. alterF f =
alterFWeird (f Nothing) (f (Just test_bottom)) f
-- This rule covers situations where alterF is used to simply insert or
-- delete in Identity (most likely via Control.Lens.At). We recognize here
-- (through the repeated @x@ on the LHS) that
--
-- @f Nothing = f (Just bottom)@,
--
-- which guarantees that @f@ doesn't care what its argument is, so
-- we don't have to either.
--
-- Why only Identity? A variant of this rule is actually valid regardless of
-- the functor, but for some functors (e.g., []), it can lead to the
-- same keys being compared multiple times, which is bad if they're
-- ugly things like strings. This is unfortunate, since the rule is likely
-- a good idea for almost all realistic uses, but I don't like nasty
-- edge cases.
"alterFconstant" forall (f :: Maybe a -> Identity (Maybe a)) x.
alterFWeird x x f = \ !k !m ->
Identity (case runIdentity x of {Nothing -> delete k m; Just a -> insert k a m})
-- This rule handles the case where 'alterF' is used to do 'insertWith'-like
-- things. Whenever possible, GHC will get rid of the Maybe nonsense for us.
-- We delay this rule to stage 1 so alterFconstant has a chance to fire.
"alterFinsertWith" [1] forall (f :: Maybe a -> Identity (Maybe a)) x y.
alterFWeird (coerce (Just x)) (coerce (Just y)) f =
coerce (insertModifying x (\mold -> case runIdentity (f (Just mold)) of
Nothing -> bogus# (# #)
Just new -> (# new #)))
-- Handle the case where someone uses 'alterF' instead of 'adjust'. This
-- rule is kind of picky; it will only work if the function doesn't
-- do anything between case matching on the Maybe and producing a result.
"alterFadjust" forall (f :: Maybe a -> Identity (Maybe a)) _y.
alterFWeird (coerce Nothing) (coerce (Just _y)) f =
coerce (adjust# (\x -> case runIdentity (f (Just x)) of
Just x' -> (# x' #)
Nothing -> bogus# (# #)))
-- The simple specialization to Const; in this case we can look up
-- the key without caring what position it's in. This is only a tiny
-- optimization.
"alterFlookup" forall _ign1 _ign2 (f :: Maybe a -> Const r (Maybe a)).
alterFWeird _ign1 _ign2 f = \ !k !m -> Const (getConst (f (lookup k m)))
#-}
alterFWeird
:: (Functor f, Eq k, Hashable k)
=> f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFWeird :: forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v))
-> k
-> HashMap k v
-> f (HashMap k v)
alterFWeird f (Maybe v)
_ f (Maybe v)
_ Maybe v -> f (Maybe v)
f = forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager Maybe v -> f (Maybe v)
f
{-# INLINE [0] alterFWeird #-}
alterFEager :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager :: forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager Maybe v -> f (Maybe v)
f !k
k HashMap k v
m = (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe v -> f (Maybe v)
f Maybe v
mv) forall a b. (a -> b) -> a -> b
$ \case
Maybe v
Nothing -> case LookupRes v
lookupRes of
LookupRes v
Absent -> HashMap k v
m
Present v
_ Int
collPos -> forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
deleteKeyExists Int
collPos Bitmap
h k
k HashMap k v
m
Just v
v' -> case LookupRes v
lookupRes of
LookupRes v
Absent -> forall k v. Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertNewKey Bitmap
h k
k v
v' HashMap k v
m
Present v
v Int
collPos ->
if v
v forall a. a -> a -> Bool
`ptrEq` v
v'
then HashMap k v
m
else forall k v. Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists Int
collPos Bitmap
h k
k v
v' HashMap k v
m
where !h :: Bitmap
h = forall a. Hashable a => a -> Bitmap
hash k
k
!lookupRes :: LookupRes v
lookupRes = forall k v. Eq k => Bitmap -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Bitmap
h k
k HashMap k v
m
!mv :: Maybe v
mv = case LookupRes v
lookupRes of
LookupRes v
Absent -> forall a. Maybe a
Nothing
Present v
v Int
_ -> forall a. a -> Maybe a
Just v
v
{-# INLINABLE alterFEager #-}
isSubmapOf :: (Eq k, Hashable k, Eq v) => HashMap k v -> HashMap k v -> Bool
isSubmapOf :: forall k v.
(Eq k, Hashable k, Eq v) =>
HashMap k v -> HashMap k v -> Bool
isSubmapOf = forall a. a -> a
Exts.inline forall k v1 v2.
(Eq k, Hashable k) =>
(v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy forall a. Eq a => a -> a -> Bool
(==)
{-# INLINABLE isSubmapOf #-}
isSubmapOfBy :: (Eq k, Hashable k) => (v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy :: forall k v1 v2.
(Eq k, Hashable k) =>
(v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy v1 -> v2 -> Bool
comp !HashMap k v1
m1 !HashMap k v2
m2 = Int -> HashMap k v1 -> HashMap k v2 -> Bool
go Int
0 HashMap k v1
m1 HashMap k v2
m2
where
go :: Int -> HashMap k v1 -> HashMap k v2 -> Bool
go Int
_ HashMap k v1
Empty HashMap k v2
_ = Bool
True
go Int
_ HashMap k v1
_ HashMap k v2
Empty = Bool
False
go Int
s (Leaf Bitmap
h1 (L k
k1 v1
v1)) HashMap k v2
t2 = forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> Bool
False) (\v2
v2 Int
_ -> v1 -> v2 -> Bool
comp v1
v1 v2
v2) Bitmap
h1 k
k1 Int
s HashMap k v2
t2
go Int
_ (Collision Bitmap
h1 Array (Leaf k v1)
ls1) (Collision Bitmap
h2 Array (Leaf k v2)
ls2) =
Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& forall k v1 v2.
Eq k =>
(v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
subsetArray v1 -> v2 -> Bool
comp Array (Leaf k v1)
ls1 Array (Leaf k v2)
ls2
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_) (BitmapIndexed Bitmap
b Array (HashMap k v2)
ls2)
| Bitmap
b forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
== Bitmap
0 = Bool
False
| Bool
otherwise =
Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v1
t1 (forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ls2 (Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m))
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_) (Full Array (HashMap k v2)
ls2) =
Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v1
t1 (forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ls2 (Bitmap -> Int -> Int
index Bitmap
h1 Int
s))
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ls1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ls2) =
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
b1 Array (HashMap k v1)
ls1 Bitmap
b2 Array (HashMap k v2)
ls2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ls1) (Full Array (HashMap k v2)
ls2) =
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
b1 Array (HashMap k v1)
ls1 Bitmap
fullNodeMask Array (HashMap k v2)
ls2
go Int
s (Full Array (HashMap k v1)
ls1) (Full Array (HashMap k v2)
ls2) =
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
fullNodeMask Array (HashMap k v1)
ls1 Bitmap
fullNodeMask Array (HashMap k v2)
ls2
go Int
_ (Collision {}) (Leaf {}) = Bool
False
go Int
_ (BitmapIndexed {}) (Leaf {}) = Bool
False
go Int
_ (Full {}) (Leaf {}) = Bool
False
go Int
_ (BitmapIndexed {}) (Collision {}) = Bool
False
go Int
_ (Full {}) (Collision {}) = Bool
False
go Int
_ (Full {}) (BitmapIndexed {}) = Bool
False
{-# INLINABLE isSubmapOfBy #-}
submapBitmapIndexed :: (HashMap k v1 -> HashMap k v2 -> Bool) -> Bitmap -> A.Array (HashMap k v1) -> Bitmap -> A.Array (HashMap k v2) -> Bool
submapBitmapIndexed :: forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed HashMap k v1 -> HashMap k v2 -> Bool
comp !Bitmap
b1 !Array (HashMap k v1)
ary1 !Bitmap
b2 !Array (HashMap k v2)
ary2 = Bool
subsetBitmaps Bool -> Bool -> Bool
&& Int -> Int -> Bitmap -> Bool
go Int
0 Int
0 (Bitmap
b1Orb2 forall a. Bits a => a -> a -> a
.&. forall a. Num a => a -> a
negate Bitmap
b1Orb2)
where
go :: Int -> Int -> Bitmap -> Bool
go :: Int -> Int -> Bitmap -> Bool
go !Int
i !Int
j !Bitmap
m
| Bitmap
m forall a. Ord a => a -> a -> Bool
> Bitmap
b1Orb2 = Bool
True
| Bitmap
b1Andb2 forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
/= Bitmap
0 = HashMap k v1 -> HashMap k v2 -> Bool
comp (forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) (forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
j) Bool -> Bool -> Bool
&&
Int -> Int -> Bitmap -> Bool
go (Int
iforall a. Num a => a -> a -> a
+Int
1) (Int
jforall a. Num a => a -> a -> a
+Int
1) (Bitmap
m forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
| Bitmap
b2 forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
/= Bitmap
0 = Int -> Int -> Bitmap -> Bool
go Int
i (Int
jforall a. Num a => a -> a -> a
+Int
1) (Bitmap
m forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
| Bool
otherwise = Int -> Int -> Bitmap -> Bool
go Int
i Int
j (Bitmap
m forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
b1Andb2 :: Bitmap
b1Andb2 = Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
b2
b1Orb2 :: Bitmap
b1Orb2 = Bitmap
b1 forall a. Bits a => a -> a -> a
.|. Bitmap
b2
subsetBitmaps :: Bool
subsetBitmaps = Bitmap
b1Orb2 forall a. Eq a => a -> a -> Bool
== Bitmap
b2
{-# INLINABLE submapBitmapIndexed #-}
union :: (Eq k, Hashable k) => HashMap k v -> HashMap k v -> HashMap k v
union :: forall k v.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k v -> HashMap k v
union = forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWith forall a b. a -> b -> a
const
{-# INLINABLE union #-}
unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWith v -> v -> v
f = forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWithKey (forall a b. a -> b -> a
const v -> v -> v
f)
{-# INLINE unionWith #-}
unionWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWithKey :: forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWithKey k -> v -> v -> v
f = Int -> HashMap k v -> HashMap k v -> HashMap k v
go Int
0
where
go :: Int -> HashMap k v -> HashMap k v -> HashMap k v
go !Int
_ HashMap k v
t1 HashMap k v
Empty = HashMap k v
t1
go Int
_ HashMap k v
Empty HashMap k v
t2 = HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Leaf Bitmap
h1 l1 :: Leaf k v
l1@(L k
k1 v
v1)) t2 :: HashMap k v
t2@(Leaf Bitmap
h2 l2 :: Leaf k v
l2@(L k
k2 v
v2))
| Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = if k
k1 forall a. Eq a => a -> a -> Bool
== k
k2
then forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 (forall k v. k -> v -> Leaf k v
L k
k1 (k -> v -> v -> v
f k
k1 v
v1 v
v2))
else forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h1 Leaf k v
l1 Leaf k v
l2
| Bool
otherwise = forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Leaf Bitmap
h1 (L k
k1 v
v1)) t2 :: HashMap k v
t2@(Collision Bitmap
h2 Array (Leaf k v)
ls2)
| Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 (forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
a v
b #)) k
k1 v
v1 Array (Leaf k v)
ls2)
| Bool
otherwise = forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Collision Bitmap
h1 Array (Leaf k v)
ls1) t2 :: HashMap k v
t2@(Leaf Bitmap
h2 (L k
k2 v
v2))
| Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 (forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
b v
a #)) k
k2 v
v2 Array (Leaf k v)
ls1)
| Bool
otherwise = forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Collision Bitmap
h1 Array (Leaf k v)
ls1) t2 :: HashMap k v
t2@(Collision Bitmap
h2 Array (Leaf k v)
ls2)
| Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 (forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
updateOrConcatWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
a v
b #)) Array (Leaf k v)
ls1 Array (Leaf k v)
ls2)
| Bool
otherwise = forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary2) =
let b' :: Bitmap
b' = Bitmap
b1 forall a. Bits a => a -> a -> a
.|. Bitmap
b2
ary' :: Array (HashMap k v)
ary' = forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
b1 Bitmap
b2 Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b' Array (HashMap k v)
ary'
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary1) (Full Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
b1 Bitmap
fullNodeMask Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (Full Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
fullNodeMask Bitmap
b2 Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Bitmap
fullNodeMask Bitmap
fullNodeMask
Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary1) HashMap k v
t2
| Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
m2 forall a. Eq a => a -> a -> Bool
== Bitmap
0 = let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary1 Int
i HashMap k v
t2
b' :: Bitmap
b' = Bitmap
b1 forall a. Bits a => a -> a -> a
.|. Bitmap
m2
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b' Array (HashMap k v)
ary'
| Bool
otherwise = let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> (e -> e) -> Array e
A.updateWith' Array (HashMap k v)
ary1 Int
i forall a b. (a -> b) -> a -> b
$ \HashMap k v
st1 ->
Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st1 HashMap k v
t2
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary'
where
h2 :: Bitmap
h2 = forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t2
m2 :: Bitmap
m2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b1 Bitmap
m2
go Int
s HashMap k v
t1 (BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary2)
| Bitmap
b2 forall a. Bits a => a -> a -> a
.&. Bitmap
m1 forall a. Eq a => a -> a -> Bool
== Bitmap
0 = let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary2 Int
i forall a b. (a -> b) -> a -> b
$! HashMap k v
t1
b' :: Bitmap
b' = Bitmap
b2 forall a. Bits a => a -> a -> a
.|. Bitmap
m1
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b' Array (HashMap k v)
ary'
| Bool
otherwise = let ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> (e -> e) -> Array e
A.updateWith' Array (HashMap k v)
ary2 Int
i forall a b. (a -> b) -> a -> b
$ \HashMap k v
st2 ->
Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
t1 HashMap k v
st2
in forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary'
where
h1 :: Bitmap
h1 = forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t1
m1 :: Bitmap
m1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b2 Bitmap
m1
go Int
s (Full Array (HashMap k v)
ary1) HashMap k v
t2 =
let h2 :: Bitmap
h2 = forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t2
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h2 Int
s
ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array (HashMap k v)
ary1 Int
i forall a b. (a -> b) -> a -> b
$ \HashMap k v
st1 -> Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st1 HashMap k v
t2
in forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s HashMap k v
t1 (Full Array (HashMap k v)
ary2) =
let h1 :: Bitmap
h1 = forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t1
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h1 Int
s
ary' :: Array (HashMap k v)
ary' = forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array (HashMap k v)
ary2 Int
i forall a b. (a -> b) -> a -> b
$ \HashMap k v
st2 -> Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
t1 HashMap k v
st2
in forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
leafHashCode :: HashMap k v -> Bitmap
leafHashCode (Leaf Bitmap
h Leaf k v
_) = Bitmap
h
leafHashCode (Collision Bitmap
h Array (Leaf k v)
_) = Bitmap
h
leafHashCode HashMap k v
_ = forall a. HasCallStack => [Char] -> a
error [Char]
"leafHashCode"
goDifferentHash :: Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
| Bitmap
m1 forall a. Eq a => a -> a -> Bool
== Bitmap
m2 = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
m1 (forall a. a -> Array a
A.singleton forall a b. (a -> b) -> a -> b
$! Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash (Int
sforall a. Num a => a -> a -> a
+Int
bitsPerSubkey) Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2)
| Bitmap
m1 forall a. Ord a => a -> a -> Bool
< Bitmap
m2 = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
m1 forall a. Bits a => a -> a -> a
.|. Bitmap
m2) (forall a. a -> a -> Array a
A.pair HashMap k v
t1 HashMap k v
t2)
| Bool
otherwise = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
m1 forall a. Bits a => a -> a -> a
.|. Bitmap
m2) (forall a. a -> a -> Array a
A.pair HashMap k v
t2 HashMap k v
t1)
where
m1 :: Bitmap
m1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
m2 :: Bitmap
m2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
{-# INLINE unionWithKey #-}
unionArrayBy :: (a -> a -> a) -> Bitmap -> Bitmap -> A.Array a -> A.Array a
-> A.Array a
unionArrayBy :: forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy a -> a -> a
f !Bitmap
b1 !Bitmap
b2 !Array a
ary1 !Array a
ary2 = forall e. (forall s. ST s (MArray s e)) -> Array e
A.run forall a b. (a -> b) -> a -> b
$ do
let bCombined :: Bitmap
bCombined = Bitmap
b1 forall a. Bits a => a -> a -> a
.|. Bitmap
b2
MArray s a
mary <- forall s a. Int -> ST s (MArray s a)
A.new_ (forall a. Bits a => a -> Int
popCount Bitmap
bCombined)
let go :: Int -> Int -> Int -> Bitmap -> ST s ()
go !Int
i !Int
i1 !Int
i2 !Bitmap
b
| Bitmap
b forall a. Eq a => a -> a -> Bool
== Bitmap
0 = forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bitmap -> Bool
testBit (Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
b2) = do
a
x1 <- forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary1 Int
i1
a
x2 <- forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary2 Int
i2
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i forall a b. (a -> b) -> a -> b
$! a -> a -> a
f a
x1 a
x2
Int -> Int -> Int -> Bitmap -> ST s ()
go (Int
iforall a. Num a => a -> a -> a
+Int
1) (Int
i1forall a. Num a => a -> a -> a
+Int
1) (Int
i2forall a. Num a => a -> a -> a
+Int
1) Bitmap
b'
| Bitmap -> Bool
testBit Bitmap
b1 = do
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary1 Int
i1
Int -> Int -> Int -> Bitmap -> ST s ()
go (Int
iforall a. Num a => a -> a -> a
+Int
1) (Int
i1forall a. Num a => a -> a -> a
+Int
1) Int
i2 Bitmap
b'
| Bool
otherwise = do
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary2 Int
i2
Int -> Int -> Int -> Bitmap -> ST s ()
go (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
i1 (Int
i2forall a. Num a => a -> a -> a
+Int
1) Bitmap
b'
where
m :: Bitmap
m = Bitmap
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` forall b. FiniteBits b => b -> Int
countTrailingZeros Bitmap
b
testBit :: Bitmap -> Bool
testBit Bitmap
x = Bitmap
x forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
/= Bitmap
0
b' :: Bitmap
b' = Bitmap
b forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement Bitmap
m
Int -> Int -> Int -> Bitmap -> ST s ()
go Int
0 Int
0 Int
0 Bitmap
bCombined
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s a
mary
{-# INLINE unionArrayBy #-}
unions :: (Eq k, Hashable k) => [HashMap k v] -> HashMap k v
unions :: forall k v. (Eq k, Hashable k) => [HashMap k v] -> HashMap k v
unions = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' forall k v.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k v -> HashMap k v
union forall k v. HashMap k v
empty
{-# INLINE unions #-}
compose :: (Eq b, Hashable b) => HashMap b c -> HashMap a b -> HashMap a c
compose :: forall b c a.
(Eq b, Hashable b) =>
HashMap b c -> HashMap a b -> HashMap a c
compose HashMap b c
bc !HashMap a b
ab
| forall k a. HashMap k a -> Bool
null HashMap b c
bc = forall k v. HashMap k v
empty
| Bool
otherwise = forall v1 v2 k. (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe (HashMap b c
bc forall k v. (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
!?) HashMap a b
ab
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey :: forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey k -> v1 -> v2
f = HashMap k v1 -> HashMap k v2
go
where
go :: HashMap k v1 -> HashMap k v2
go HashMap k v1
Empty = forall k v. HashMap k v
Empty
go (Leaf Bitmap
h (L k
k v1
v)) = forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h forall a b. (a -> b) -> a -> b
$ forall k v. k -> v -> Leaf k v
L k
k (k -> v1 -> v2
f k
k v1
v)
go (BitmapIndexed Bitmap
b Array (HashMap k v1)
ary) = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> Array a -> Array b
A.map HashMap k v1 -> HashMap k v2
go Array (HashMap k v1)
ary
go (Full Array (HashMap k v1)
ary) = forall k v. Array (HashMap k v) -> HashMap k v
Full forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> Array a -> Array b
A.map HashMap k v1 -> HashMap k v2
go Array (HashMap k v1)
ary
go (Collision Bitmap
h Array (Leaf k v1)
ary) = forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h forall a b. (a -> b) -> a -> b
$
forall a b. (a -> b) -> Array a -> Array b
A.map' (\ (L k
k v1
v) -> forall k v. k -> v -> Leaf k v
L k
k (k -> v1 -> v2
f k
k v1
v)) Array (Leaf k v1)
ary
{-# INLINE mapWithKey #-}
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map :: forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map v1 -> v2
f = forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey (forall a b. a -> b -> a
const v1 -> v2
f)
{-# INLINE map #-}
traverseWithKey
:: Applicative f
=> (k -> v1 -> f v2)
-> HashMap k v1 -> f (HashMap k v2)
traverseWithKey :: forall (f :: * -> *) k v1 v2.
Applicative f =>
(k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
traverseWithKey k -> v1 -> f v2
f = HashMap k v1 -> f (HashMap k v2)
go
where
go :: HashMap k v1 -> f (HashMap k v2)
go HashMap k v1
Empty = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k v. HashMap k v
Empty
go (Leaf Bitmap
h (L k
k v1
v)) = forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k v. k -> v -> Leaf k v
L k
k forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> v1 -> f v2
f k
k v1
v
go (BitmapIndexed Bitmap
b Array (HashMap k v1)
ary) = forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse HashMap k v1 -> f (HashMap k v2)
go Array (HashMap k v1)
ary
go (Full Array (HashMap k v1)
ary) = forall k v. Array (HashMap k v) -> HashMap k v
Full forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse HashMap k v1 -> f (HashMap k v2)
go Array (HashMap k v1)
ary
go (Collision Bitmap
h Array (Leaf k v1)
ary) =
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse' (\ (L k
k v1
v) -> forall k v. k -> v -> Leaf k v
L k
k forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> v1 -> f v2
f k
k v1
v) Array (Leaf k v1)
ary
{-# INLINE traverseWithKey #-}
mapKeys :: (Eq k2, Hashable k2) => (k1 -> k2) -> HashMap k1 v -> HashMap k2 v
mapKeys :: forall k2 k1 v.
(Eq k2, Hashable k2) =>
(k1 -> k2) -> HashMap k1 v -> HashMap k2 v
mapKeys k1 -> k2
f = forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (\k1
k v
x [(k2, v)]
xs -> (k1 -> k2
f k1
k, v
x) forall a. a -> [a] -> [a]
: [(k2, v)]
xs) []
difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
difference :: forall k v w.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k w -> HashMap k v
difference HashMap k v
a HashMap k w
b = forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Maybe w
Nothing -> forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Maybe w
_ -> HashMap k v
m
{-# INLINABLE difference #-}
differenceWith :: (Eq k, Hashable k) => (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith :: forall k v w.
(Eq k, Hashable k) =>
(v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith v -> w -> Maybe v
f HashMap k v
a HashMap k w
b = forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Maybe w
Nothing -> forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Just w
w -> forall b a. b -> (a -> b) -> Maybe a -> b
maybe HashMap k v
m (\v
y -> forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
y HashMap k v
m) (v -> w -> Maybe v
f v
v w
w)
{-# INLINABLE differenceWith #-}
intersection :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
intersection :: forall k v w.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k w -> HashMap k v
intersection = forall a. a -> a
Exts.inline forall k v1 v2 v3.
(Eq k, Hashable k) =>
(v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith forall a b. a -> b -> a
const
{-# INLINABLE intersection #-}
intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith :: forall k v1 v2 v3.
(Eq k, Hashable k) =>
(v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith v1 -> v2 -> v3
f = forall a. a -> a
Exts.inline forall k v1 v2 v3.
(Eq k, Hashable k) =>
(k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const v1 -> v2 -> v3
f
{-# INLINABLE intersectionWith #-}
intersectionWithKey :: (Eq k, Hashable k) => (k -> v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey :: forall k v1 v2 v3.
(Eq k, Hashable k) =>
(k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey k -> v1 -> v2 -> v3
f = forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey# forall a b. (a -> b) -> a -> b
$ \k
k v1
v1 v2
v2 -> (# k -> v1 -> v2 -> v3
f k
k v1
v1 v2
v2 #)
{-# INLINABLE intersectionWithKey #-}
intersectionWithKey# :: Eq k => (k -> v1 -> v2 -> (# v3 #)) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey# :: forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey# k -> v1 -> v2 -> (# v3 #)
f = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go Int
0
where
go :: Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go !Int
_ HashMap k v1
_ HashMap k v2
Empty = forall k v. HashMap k v
Empty
go Int
_ HashMap k v1
Empty HashMap k v2
_ = forall k v. HashMap k v
Empty
go Int
s (Leaf Bitmap
h1 (L k
k1 v1
v1)) HashMap k v2
t2 =
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont
(\(# #)
_ -> forall k v. HashMap k v
Empty)
(\v2
v Int
_ -> case k -> v1 -> v2 -> (# v3 #)
f k
k1 v1
v1 v2
v of (# v3
v' #) -> forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 forall a b. (a -> b) -> a -> b
$ forall k v. k -> v -> Leaf k v
L k
k1 v3
v')
Bitmap
h1 k
k1 Int
s HashMap k v2
t2
go Int
s HashMap k v1
t1 (Leaf Bitmap
h2 (L k
k2 v2
v2)) =
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont
(\(# #)
_ -> forall k v. HashMap k v
Empty)
(\v1
v Int
_ -> case k -> v1 -> v2 -> (# v3 #)
f k
k2 v1
v v2
v2 of (# v3
v' #) -> forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h2 forall a b. (a -> b) -> a -> b
$ forall k v. k -> v -> Leaf k v
L k
k2 v3
v')
Bitmap
h2 k
k2 Int
s HashMap k v1
t1
go Int
_ (Collision Bitmap
h1 Array (Leaf k v1)
ls1) (Collision Bitmap
h2 Array (Leaf k v2)
ls2) = forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> Bitmap
-> Bitmap
-> Array (Leaf k v1)
-> Array (Leaf k v2)
-> HashMap k v3
intersectionCollisions k -> v1 -> v2 -> (# v3 #)
f Bitmap
h1 Bitmap
h2 Array (Leaf k v1)
ls1 Array (Leaf k v2)
ls2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ary2) =
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey)) Bitmap
b1 Bitmap
b2 Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ary1) (Full Array (HashMap k v2)
ary2) =
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey)) Bitmap
b1 Bitmap
fullNodeMask Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (Full Array (HashMap k v1)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ary2) =
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey)) Bitmap
fullNodeMask Bitmap
b2 Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (Full Array (HashMap k v1)
ary1) (Full Array (HashMap k v2)
ary2) =
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey)) Bitmap
fullNodeMask Bitmap
fullNodeMask Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ary1) t2 :: HashMap k v2
t2@(Collision Bitmap
h2 Array (Leaf k v2)
_ls2)
| Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
m2 forall a. Eq a => a -> a -> Bool
== Bitmap
0 = forall k v. HashMap k v
Empty
| Bool
otherwise = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey) (forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) HashMap k v2
t2
where
m2 :: Bitmap
m2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b1 Bitmap
m2
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_ls1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ary2)
| Bitmap
b2 forall a. Bits a => a -> a -> a
.&. Bitmap
m1 forall a. Eq a => a -> a -> Bool
== Bitmap
0 = forall k v. HashMap k v
Empty
| Bool
otherwise = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey) HashMap k v1
t1 (forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
i)
where
m1 :: Bitmap
m1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b2 Bitmap
m1
go Int
s (Full Array (HashMap k v1)
ary1) t2 :: HashMap k v2
t2@(Collision Bitmap
h2 Array (Leaf k v2)
_ls2) = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey) (forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) HashMap k v2
t2
where
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h2 Int
s
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_ls1) (Full Array (HashMap k v2)
ary2) = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int
s forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey) HashMap k v1
t1 (forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
i)
where
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h1 Int
s
{-# INLINE intersectionWithKey# #-}
intersectionArrayBy ::
( HashMap k v1 ->
HashMap k v2 ->
HashMap k v3
) ->
Bitmap ->
Bitmap ->
A.Array (HashMap k v1) ->
A.Array (HashMap k v2) ->
HashMap k v3
intersectionArrayBy :: forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy HashMap k v1 -> HashMap k v2 -> HashMap k v3
f !Bitmap
b1 !Bitmap
b2 !Array (HashMap k v1)
ary1 !Array (HashMap k v2)
ary2
| Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
b2 forall a. Eq a => a -> a -> Bool
== Bitmap
0 = forall k v. HashMap k v
Empty
| Bool
otherwise = forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ do
MArray s (HashMap k v3)
mary <- forall s a. Int -> ST s (MArray s a)
A.new_ forall a b. (a -> b) -> a -> b
$ forall a. Bits a => a -> Int
popCount Bitmap
bIntersect
let go :: Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go !Int
i !Int
i1 !Int
i2 !Bitmap
b !Bitmap
bFinal
| Bitmap
b forall a. Eq a => a -> a -> Bool
== Bitmap
0 = forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Bitmap
bFinal)
| Bitmap -> Bool
testBit forall a b. (a -> b) -> a -> b
$ Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
b2 = do
HashMap k v1
x1 <- forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v1)
ary1 Int
i1
HashMap k v2
x2 <- forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v2)
ary2 Int
i2
case HashMap k v1 -> HashMap k v2 -> HashMap k v3
f HashMap k v1
x1 HashMap k v2
x2 of
HashMap k v3
Empty -> Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
i (Int
i1 forall a. Num a => a -> a -> a
+ Int
1) (Int
i2 forall a. Num a => a -> a -> a
+ Int
1) Bitmap
b' (Bitmap
bFinal forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement Bitmap
m)
HashMap k v3
_ -> do
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v3)
mary Int
i forall a b. (a -> b) -> a -> b
$! HashMap k v1 -> HashMap k v2 -> HashMap k v3
f HashMap k v1
x1 HashMap k v2
x2
Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) (Int
i1 forall a. Num a => a -> a -> a
+ Int
1) (Int
i2 forall a. Num a => a -> a -> a
+ Int
1) Bitmap
b' Bitmap
bFinal
| Bitmap -> Bool
testBit Bitmap
b1 = Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
i (Int
i1 forall a. Num a => a -> a -> a
+ Int
1) Int
i2 Bitmap
b' Bitmap
bFinal
| Bool
otherwise = Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
i Int
i1 (Int
i2 forall a. Num a => a -> a -> a
+ Int
1) Bitmap
b' Bitmap
bFinal
where
m :: Bitmap
m = Bitmap
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` forall b. FiniteBits b => b -> Int
countTrailingZeros Bitmap
b
testBit :: Bitmap -> Bool
testBit Bitmap
x = Bitmap
x forall a. Bits a => a -> a -> a
.&. Bitmap
m forall a. Eq a => a -> a -> Bool
/= Bitmap
0
b' :: Bitmap
b' = Bitmap
b forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement Bitmap
m
(Int
len, Bitmap
bFinal) <- Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
0 Int
0 Int
0 Bitmap
bCombined Bitmap
bIntersect
case Int
len of
Int
0 -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k v. HashMap k v
Empty
Int
1 -> do
HashMap k v3
l <- forall s a. MArray s a -> Int -> ST s a
A.read MArray s (HashMap k v3)
mary Int
0
if forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v3
l
then forall (f :: * -> *) a. Applicative f => a -> f a
pure HashMap k v3
l
else forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bFinal forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (HashMap k v3)
mary Int
1)
Int
_ -> forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
bFinal forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (HashMap k v3)
mary Int
len)
where
bCombined :: Bitmap
bCombined = Bitmap
b1 forall a. Bits a => a -> a -> a
.|. Bitmap
b2
bIntersect :: Bitmap
bIntersect = Bitmap
b1 forall a. Bits a => a -> a -> a
.&. Bitmap
b2
{-# INLINE intersectionArrayBy #-}
intersectionCollisions :: Eq k => (k -> v1 -> v2 -> (# v3 #)) -> Hash -> Hash -> A.Array (Leaf k v1) -> A.Array (Leaf k v2) -> HashMap k v3
intersectionCollisions :: forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> Bitmap
-> Bitmap
-> Array (Leaf k v1)
-> Array (Leaf k v2)
-> HashMap k v3
intersectionCollisions k -> v1 -> v2 -> (# v3 #)
f Bitmap
h1 Bitmap
h2 Array (Leaf k v1)
ary1 Array (Leaf k v2)
ary2
| Bitmap
h1 forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v2)
mary2 <- forall e s. Array e -> Int -> Int -> ST s (MArray s e)
A.thaw Array (Leaf k v2)
ary2 Int
0 forall a b. (a -> b) -> a -> b
$ forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2
MArray s (Leaf k v3)
mary <- forall s a. Int -> ST s (MArray s a)
A.new_ forall a b. (a -> b) -> a -> b
$ forall a. Ord a => a -> a -> a
min (forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1) (forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2)
let go :: Int -> Int -> ST s Int
go Int
i Int
j
| Int
i forall a. Ord a => a -> a -> Bool
>= forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1 Bool -> Bool -> Bool
|| Int
j forall a. Ord a => a -> a -> Bool
>= forall s a. MArray s a -> Int
A.lengthM MArray s (Leaf k v2)
mary2 = forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
j
| Bool
otherwise = do
L k
k1 v1
v1 <- forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v1)
ary1 Int
i
forall k s v.
Eq k =>
k -> Int -> MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
searchSwap k
k1 Int
j MArray s (Leaf k v2)
mary2 forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Just (L k
_k2 v2
v2) -> do
let !(# v3
v3 #) = k -> v1 -> v2 -> (# v3 #)
f k
k1 v1
v1 v2
v2
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v3)
mary Int
j forall a b. (a -> b) -> a -> b
$ forall k v. k -> v -> Leaf k v
L k
k1 v3
v3
Int -> Int -> ST s Int
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) (Int
j forall a. Num a => a -> a -> a
+ Int
1)
Maybe (Leaf k v2)
Nothing -> do
Int -> Int -> ST s Int
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) Int
j
Int
len <- Int -> Int -> ST s Int
go Int
0 Int
0
case Int
len of
Int
0 -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k v. HashMap k v
Empty
Int
1 -> forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf k v3)
mary Int
0
Int
_ -> forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (Leaf k v3)
mary Int
len)
| Bool
otherwise = forall k v. HashMap k v
Empty
{-# INLINE intersectionCollisions #-}
searchSwap :: Eq k => k -> Int -> A.MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
searchSwap :: forall k s v.
Eq k =>
k -> Int -> MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
searchSwap k
toFind Int
start = forall {t} {s} {v}.
Eq t =>
Int -> t -> Int -> MArray s (Leaf t v) -> ST s (Maybe (Leaf t v))
go Int
start k
toFind Int
start
where
go :: Int -> t -> Int -> MArray s (Leaf t v) -> ST s (Maybe (Leaf t v))
go Int
i0 t
k Int
i MArray s (Leaf t v)
mary
| Int
i forall a. Ord a => a -> a -> Bool
>= forall s a. MArray s a -> Int
A.lengthM MArray s (Leaf t v)
mary = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
| Bool
otherwise = do
l :: Leaf t v
l@(L t
k' v
_v) <- forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf t v)
mary Int
i
if t
k forall a. Eq a => a -> a -> Bool
== t
k'
then do
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf t v)
mary Int
i forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf t v)
mary Int
i0
forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Leaf t v
l
else Int -> t -> Int -> MArray s (Leaf t v) -> ST s (Maybe (Leaf t v))
go Int
i0 t
k (Int
i forall a. Num a => a -> a -> a
+ Int
1) MArray s (Leaf t v)
mary
{-# INLINE searchSwap #-}
foldl' :: (a -> v -> a) -> a -> HashMap k v -> a
foldl' :: forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl' a -> v -> a
f = forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' (\ a
z k
_ v
v -> a -> v -> a
f a
z v
v)
{-# INLINE foldl' #-}
foldr' :: (v -> a -> a) -> a -> HashMap k v -> a
foldr' :: forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr' v -> a -> a
f = forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' (\ k
_ v
v a
z -> v -> a -> a
f v
v a
z)
{-# INLINE foldr' #-}
foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' :: forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' a -> k -> v -> a
f = a -> HashMap k v -> a
go
where
go :: a -> HashMap k v -> a
go !a
z HashMap k v
Empty = a
z
go a
z (Leaf Bitmap
_ (L k
k v
v)) = a -> k -> v -> a
f a
z k
k v
v
go a
z (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Full Array (HashMap k v)
ary) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Collision Bitmap
_ Array (Leaf k v)
ary) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (\ a
z' (L k
k v
v) -> a -> k -> v -> a
f a
z' k
k v
v) a
z Array (Leaf k v)
ary
{-# INLINE foldlWithKey' #-}
foldrWithKey' :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' :: forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' k -> v -> a -> a
f = forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> a -> a
go
where
go :: HashMap k v -> a -> a
go HashMap k v
Empty a
z = a
z
go (Leaf Bitmap
_ (L k
k v
v)) !a
z = k -> v -> a -> a
f k
k v
v a
z
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) !a
z = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) !a
z = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) !a
z = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' (\ (L k
k v
v) a
z' -> k -> v -> a -> a
f k
k v
v a
z') a
z Array (Leaf k v)
ary
{-# INLINE foldrWithKey' #-}
foldr :: (v -> a -> a) -> a -> HashMap k v -> a
foldr :: forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr v -> a -> a
f = forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (forall a b. a -> b -> a
const v -> a -> a
f)
{-# INLINE foldr #-}
foldl :: (a -> v -> a) -> a -> HashMap k v -> a
foldl :: forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl a -> v -> a
f = forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey (\a
a k
_k v
v -> a -> v -> a
f a
a v
v)
{-# INLINE foldl #-}
foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey :: forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey k -> v -> a -> a
f = forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> a -> a
go
where
go :: HashMap k v -> a -> a
go HashMap k v
Empty a
z = a
z
go (Leaf Bitmap
_ (L k
k v
v)) a
z = k -> v -> a -> a
f k
k v
v a
z
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) a
z = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) a
z = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) a
z = forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr (\ (L k
k v
v) a
z' -> k -> v -> a -> a
f k
k v
v a
z') a
z Array (Leaf k v)
ary
{-# INLINE foldrWithKey #-}
foldlWithKey :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey :: forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey a -> k -> v -> a
f = a -> HashMap k v -> a
go
where
go :: a -> HashMap k v -> a
go a
z HashMap k v
Empty = a
z
go a
z (Leaf Bitmap
_ (L k
k v
v)) = a -> k -> v -> a
f a
z k
k v
v
go a
z (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Full Array (HashMap k v)
ary) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Collision Bitmap
_ Array (Leaf k v)
ary) = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl (\ a
z' (L k
k v
v) -> a -> k -> v -> a
f a
z' k
k v
v) a
z Array (Leaf k v)
ary
{-# INLINE foldlWithKey #-}
foldMapWithKey :: Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey :: forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey k -> v -> m
f = HashMap k v -> m
go
where
go :: HashMap k v -> m
go HashMap k v
Empty = forall a. Monoid a => a
mempty
go (Leaf Bitmap
_ (L k
k v
v)) = k -> v -> m
f k
k v
v
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap HashMap k v -> m
go Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) = forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap HashMap k v -> m
go Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) = forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap (\ (L k
k v
v) -> k -> v -> m
f k
k v
v) Array (Leaf k v)
ary
{-# INLINE foldMapWithKey #-}
mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey :: forall k v1 v2.
(k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey k -> v1 -> Maybe v2
f = forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v1 -> Maybe (HashMap k v2)
onLeaf Leaf k v1 -> Maybe (Leaf k v2)
onColl
where onLeaf :: HashMap k v1 -> Maybe (HashMap k v2)
onLeaf (Leaf Bitmap
h (L k
k v1
v)) | Just v2
v' <- k -> v1 -> Maybe v2
f k
k v1
v = forall a. a -> Maybe a
Just (forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (forall k v. k -> v -> Leaf k v
L k
k v2
v'))
onLeaf HashMap k v1
_ = forall a. Maybe a
Nothing
onColl :: Leaf k v1 -> Maybe (Leaf k v2)
onColl (L k
k v1
v) | Just v2
v' <- k -> v1 -> Maybe v2
f k
k v1
v = forall a. a -> Maybe a
Just (forall k v. k -> v -> Leaf k v
L k
k v2
v')
| Bool
otherwise = forall a. Maybe a
Nothing
{-# INLINE mapMaybeWithKey #-}
mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe :: forall v1 v2 k. (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe v1 -> Maybe v2
f = forall k v1 v2.
(k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey (forall a b. a -> b -> a
const v1 -> Maybe v2
f)
{-# INLINE mapMaybe #-}
filterWithKey :: forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey :: forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey k -> v -> Bool
pred = forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v -> Maybe (HashMap k v)
onLeaf Leaf k v -> Maybe (Leaf k v)
onColl
where onLeaf :: HashMap k v -> Maybe (HashMap k v)
onLeaf t :: HashMap k v
t@(Leaf Bitmap
_ (L k
k v
v)) | k -> v -> Bool
pred k
k v
v = forall a. a -> Maybe a
Just HashMap k v
t
onLeaf HashMap k v
_ = forall a. Maybe a
Nothing
onColl :: Leaf k v -> Maybe (Leaf k v)
onColl el :: Leaf k v
el@(L k
k v
v) | k -> v -> Bool
pred k
k v
v = forall a. a -> Maybe a
Just Leaf k v
el
onColl Leaf k v
_ = forall a. Maybe a
Nothing
{-# INLINE filterWithKey #-}
filterMapAux :: forall k v1 v2
. (HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2))
-> HashMap k v1
-> HashMap k v2
filterMapAux :: forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v1 -> Maybe (HashMap k v2)
onLeaf Leaf k v1 -> Maybe (Leaf k v2)
onColl = HashMap k v1 -> HashMap k v2
go
where
go :: HashMap k v1 -> HashMap k v2
go HashMap k v1
Empty = forall k v. HashMap k v
Empty
go t :: HashMap k v1
t@Leaf{}
| Just HashMap k v2
t' <- HashMap k v1 -> Maybe (HashMap k v2)
onLeaf HashMap k v1
t = HashMap k v2
t'
| Bool
otherwise = forall k v. HashMap k v
Empty
go (BitmapIndexed Bitmap
b Array (HashMap k v1)
ary) = Array (HashMap k v1) -> Bitmap -> HashMap k v2
filterA Array (HashMap k v1)
ary Bitmap
b
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v1) -> Bitmap -> HashMap k v2
filterA Array (HashMap k v1)
ary Bitmap
fullNodeMask
go (Collision Bitmap
h Array (Leaf k v1)
ary) = Array (Leaf k v1) -> Bitmap -> HashMap k v2
filterC Array (Leaf k v1)
ary Bitmap
h
filterA :: Array (HashMap k v1) -> Bitmap -> HashMap k v2
filterA Array (HashMap k v1)
ary0 Bitmap
b0 =
let !n :: Int
n = forall a. Array a -> Int
A.length Array (HashMap k v1)
ary0
in forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ do
MArray s (HashMap k v2)
mary <- forall s a. Int -> ST s (MArray s a)
A.new_ Int
n
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary0 MArray s (HashMap k v2)
mary Bitmap
b0 Int
0 Int
0 Bitmap
1 Int
n
where
step :: A.Array (HashMap k v1) -> A.MArray s (HashMap k v2)
-> Bitmap -> Int -> Int -> Bitmap -> Int
-> ST s (HashMap k v2)
step :: forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step !Array (HashMap k v1)
ary !MArray s (HashMap k v2)
mary !Bitmap
b Int
i !Int
j !Bitmap
bi Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = case Int
j of
Int
0 -> forall (m :: * -> *) a. Monad m => a -> m a
return forall k v. HashMap k v
Empty
Int
1 -> do
HashMap k v2
ch <- forall s a. MArray s a -> Int -> ST s a
A.read MArray s (HashMap k v2)
mary Int
0
case HashMap k v2
ch of
HashMap k v2
t | forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v2
t -> forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
t
HashMap k v2
_ -> forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s a. MArray s a -> Int -> ST s (Array a)
A.trim MArray s (HashMap k v2)
mary Int
1
Int
_ -> do
Array (HashMap k v2)
ary2 <- forall s a. MArray s a -> Int -> ST s (Array a)
A.trim MArray s (HashMap k v2)
mary Int
j
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! if Int
j forall a. Eq a => a -> a -> Bool
== Int
maxChildren
then forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v2)
ary2
else forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v2)
ary2
| Bitmap
bi forall a. Bits a => a -> a -> a
.&. Bitmap
b forall a. Eq a => a -> a -> Bool
== Bitmap
0 = forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary Bitmap
b Int
i Int
j (Bitmap
bi forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
| Bool
otherwise = case HashMap k v1 -> HashMap k v2
go (forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary Int
i) of
HashMap k v2
Empty -> forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary (Bitmap
b forall a. Bits a => a -> a -> a
.&. forall a. Bits a => a -> a
complement Bitmap
bi) (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
j
(Bitmap
bi forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
HashMap k v2
t -> do forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v2)
mary Int
j HashMap k v2
t
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary Bitmap
b (Int
iforall a. Num a => a -> a -> a
+Int
1) (Int
jforall a. Num a => a -> a -> a
+Int
1) (Bitmap
bi forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
filterC :: Array (Leaf k v1) -> Bitmap -> HashMap k v2
filterC Array (Leaf k v1)
ary0 Bitmap
h =
let !n :: Int
n = forall a. Array a -> Int
A.length Array (Leaf k v1)
ary0
in forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v2)
mary <- forall s a. Int -> ST s (MArray s a)
A.new_ Int
n
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary0 MArray s (Leaf k v2)
mary Int
0 Int
0 Int
n
where
step :: A.Array (Leaf k v1) -> A.MArray s (Leaf k v2)
-> Int -> Int -> Int
-> ST s (HashMap k v2)
step :: forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step !Array (Leaf k v1)
ary !MArray s (Leaf k v2)
mary Int
i !Int
j Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = case Int
j of
Int
0 -> forall (m :: * -> *) a. Monad m => a -> m a
return forall k v. HashMap k v
Empty
Int
1 -> do Leaf k v2
l <- forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf k v2)
mary Int
0
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h Leaf k v2
l
Int
_ | Int
i forall a. Eq a => a -> a -> Bool
== Int
j -> do Array (Leaf k v2)
ary2 <- forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s (Leaf k v2)
mary
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v2)
ary2
| Bool
otherwise -> do Array (Leaf k v2)
ary2 <- forall s a. MArray s a -> Int -> ST s (Array a)
A.trim MArray s (Leaf k v2)
mary Int
j
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v2)
ary2
| Just Leaf k v2
el <- Leaf k v1 -> Maybe (Leaf k v2)
onColl forall a b. (a -> b) -> a -> b
$! forall a. Array a -> Int -> a
A.index Array (Leaf k v1)
ary Int
i
= forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v2)
mary Int
j Leaf k v2
el forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary MArray s (Leaf k v2)
mary (Int
iforall a. Num a => a -> a -> a
+Int
1) (Int
jforall a. Num a => a -> a -> a
+Int
1) Int
n
| Bool
otherwise = forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary MArray s (Leaf k v2)
mary (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
j Int
n
{-# INLINE filterMapAux #-}
filter :: (v -> Bool) -> HashMap k v -> HashMap k v
filter :: forall v k. (v -> Bool) -> HashMap k v -> HashMap k v
filter v -> Bool
p = forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey (\k
_ v
v -> v -> Bool
p v
v)
{-# INLINE filter #-}
keys :: HashMap k v -> [k]
keys :: forall k v. HashMap k v -> [k]
keys = forall a b. (a -> b) -> [a] -> [b]
List.map forall a b. (a, b) -> a
fst forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k v. HashMap k v -> [(k, v)]
toList
{-# INLINE keys #-}
elems :: HashMap k v -> [v]
elems :: forall k a. HashMap k a -> [a]
elems = forall a b. (a -> b) -> [a] -> [b]
List.map forall a b. (a, b) -> b
snd forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k v. HashMap k v -> [(k, v)]
toList
{-# INLINE elems #-}
toList :: HashMap k v -> [(k, v)]
toList :: forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
t = forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
Exts.build (\ (k, v) -> b -> b
c b
z -> forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (forall a b c. ((a, b) -> c) -> a -> b -> c
curry (k, v) -> b -> b
c) b
z HashMap k v
t)
{-# INLINE toList #-}
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList :: forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m) forall k v. HashMap k v
empty
{-# INLINABLE fromList #-}
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith v -> v -> v
f = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWith v -> v -> v
f k
k v
v HashMap k v
m) forall k v. HashMap k v
empty
{-# INLINE fromListWith #-}
fromListWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey :: forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey k -> v -> v -> v
f = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey (\k
k' v
a v
b -> (# k -> v -> v -> v
f k
k' v
a v
b #)) k
k v
v HashMap k v
m) forall k v. HashMap k v
empty
{-# INLINE fromListWithKey #-}
lookupInArrayCont ::
forall rep (r :: TYPE rep) k v.
Eq k => ((# #) -> r) -> (v -> Int -> r) -> k -> A.Array (Leaf k v) -> r
lookupInArrayCont :: forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (# #) -> r
absent v -> Int -> r
present k
k0 Array (Leaf k v)
ary0 = Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go k
k0 Array (Leaf k v)
ary0 Int
0 (forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: Eq k => k -> A.Array (Leaf k v) -> Int -> Int -> r
go :: Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = (# #) -> r
absent (# #)
| Bool
otherwise = case forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
v)
| k
k forall a. Eq a => a -> a -> Bool
== k
kx -> v -> Int -> r
present v
v Int
i
| Bool
otherwise -> Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go k
k Array (Leaf k v)
ary (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINE lookupInArrayCont #-}
indexOf :: Eq k => k -> A.Array (Leaf k v) -> Maybe Int
indexOf :: forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k0 Array (Leaf k v)
ary0 = forall {t} {v}.
Eq t =>
t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go k
k0 Array (Leaf k v)
ary0 Int
0 (forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go !t
k !Array (Leaf t v)
ary !Int
i !Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = forall a. Maybe a
Nothing
| Bool
otherwise = case forall a. Array a -> Int -> a
A.index Array (Leaf t v)
ary Int
i of
(L t
kx v
_)
| t
k forall a. Eq a => a -> a -> Bool
== t
kx -> forall a. a -> Maybe a
Just Int
i
| Bool
otherwise -> t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go t
k Array (Leaf t v)
ary (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE indexOf #-}
updateWith# :: Eq k => (v -> (# v #)) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateWith# :: forall k v.
Eq k =>
(v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
updateWith# v -> (# v #)
f k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 Array (Leaf k v)
ary0 Int
0 (forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = Array (Leaf k v)
ary
| Bool
otherwise = case forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
y) | k
k forall a. Eq a => a -> a -> Bool
== k
kx -> case v -> (# v #)
f v
y of
(# v
y' #)
| forall a. a -> a -> Bool
ptrEq v
y v
y' -> Array (Leaf k v)
ary
| Bool
otherwise -> forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k Array (Leaf k v)
ary (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE updateWith# #-}
updateOrSnocWith :: Eq k => (v -> v -> (# v #)) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWith :: forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith v -> v -> (# v #)
f = forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (forall a b. a -> b -> a
const v -> v -> (# v #)
f)
{-# INLINABLE updateOrSnocWith #-}
updateOrSnocWithKey :: Eq k => (k -> v -> v -> (# v #)) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWithKey :: forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey k -> v -> v -> (# v #)
f k
k0 v
v0 Array (Leaf k v)
ary0 = k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 v
v0 Array (Leaf k v)
ary0 Int
0 (forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k v
v !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = forall a. Array a -> a -> Array a
A.snoc Array (Leaf k v)
ary forall a b. (a -> b) -> a -> b
$ forall k v. k -> v -> Leaf k v
L k
k v
v
| L k
kx v
y <- forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i
, k
k forall a. Eq a => a -> a -> Bool
== k
kx
, (# v
v2 #) <- k -> v -> v -> (# v #)
f k
k v
v v
y
= forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (forall k v. k -> v -> Leaf k v
L k
k v
v2)
| Bool
otherwise
= k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k v
v Array (Leaf k v)
ary (Int
iforall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE updateOrSnocWithKey #-}
updateOrConcatWithKey :: Eq k => (k -> v -> v -> (# v #)) -> A.Array (Leaf k v) -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateOrConcatWithKey :: forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
updateOrConcatWithKey k -> v -> v -> (# v #)
f Array (Leaf k v)
ary1 Array (Leaf k v)
ary2 = forall e. (forall s. ST s (MArray s e)) -> Array e
A.run forall a b. (a -> b) -> a -> b
$ do
let indices :: Array (Maybe Int)
indices = forall a b. (a -> b) -> Array a -> Array b
A.map' (\(L k
k v
_) -> forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k Array (Leaf k v)
ary1) Array (Leaf k v)
ary2
let nOnly2 :: Int
nOnly2 = forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (\Int
n -> forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Int
nforall a. Num a => a -> a -> a
+Int
1) (forall a b. a -> b -> a
const Int
n)) Int
0 Array (Maybe Int)
indices
let n1 :: Int
n1 = forall a. Array a -> Int
A.length Array (Leaf k v)
ary1
let n2 :: Int
n2 = forall a. Array a -> Int
A.length Array (Leaf k v)
ary2
MArray s (Leaf k v)
mary <- forall s a. Int -> ST s (MArray s a)
A.new_ (Int
n1 forall a. Num a => a -> a -> a
+ Int
nOnly2)
forall e s. Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
A.copy Array (Leaf k v)
ary1 Int
0 MArray s (Leaf k v)
mary Int
0 Int
n1
let go :: Int -> Int -> ST s ()
go !Int
iEnd !Int
i2
| Int
i2 forall a. Ord a => a -> a -> Bool
>= Int
n2 = forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise = case forall a. Array a -> Int -> a
A.index Array (Maybe Int)
indices Int
i2 of
Just Int
i1 -> do
L k
k v
v1 <- forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary1 Int
i1
L k
_ v
v2 <- forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary2 Int
i2
case k -> v -> v -> (# v #)
f k
k v
v1 v
v2 of (# v
v3 #) -> forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
i1 (forall k v. k -> v -> Leaf k v
L k
k v
v3)
Int -> Int -> ST s ()
go Int
iEnd (Int
i2forall a. Num a => a -> a -> a
+Int
1)
Maybe Int
Nothing -> do
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
iEnd forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary2 Int
i2
Int -> Int -> ST s ()
go (Int
iEndforall a. Num a => a -> a -> a
+Int
1) (Int
i2forall a. Num a => a -> a -> a
+Int
1)
Int -> Int -> ST s ()
go Int
n1 Int
0
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
{-# INLINABLE updateOrConcatWithKey #-}
subsetArray :: Eq k => (v1 -> v2 -> Bool) -> A.Array (Leaf k v1) -> A.Array (Leaf k v2) -> Bool
subsetArray :: forall k v1 v2.
Eq k =>
(v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
subsetArray v1 -> v2 -> Bool
cmpV Array (Leaf k v1)
ary1 Array (Leaf k v2)
ary2 = forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1 forall a. Ord a => a -> a -> Bool
<= forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2 Bool -> Bool -> Bool
&& forall a. (a -> Bool) -> Array a -> Bool
A.all Leaf k v1 -> Bool
inAry2 Array (Leaf k v1)
ary1
where
inAry2 :: Leaf k v1 -> Bool
inAry2 (L k
k1 v1
v1) = forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (\(# #)
_ -> Bool
False) (\v2
v2 Int
_ -> v1 -> v2 -> Bool
cmpV v1
v1 v2
v2) k
k1 Array (Leaf k v2)
ary2
{-# INLINE inAry2 #-}
update32 :: A.Array e -> Int -> e -> A.Array e
update32 :: forall e. Array e -> Int -> e -> Array e
update32 Array e
ary Int
idx e
b = forall a. (forall s. ST s a) -> a
runST (forall e s. Array e -> Int -> e -> ST s (Array e)
update32M Array e
ary Int
idx e
b)
{-# INLINE update32 #-}
update32M :: A.Array e -> Int -> e -> ST s (A.Array e)
update32M :: forall e s. Array e -> Int -> e -> ST s (Array e)
update32M Array e
ary Int
idx e
b = do
MArray s e
mary <- forall e s. Array e -> ST s (MArray s e)
clone Array e
ary
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s e
mary Int
idx e
b
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s e
mary
{-# INLINE update32M #-}
update32With' :: A.Array e -> Int -> (e -> e) -> A.Array e
update32With' :: forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array e
ary Int
idx e -> e
f
| (# e
x #) <- forall a. Array a -> Int -> (# a #)
A.index# Array e
ary Int
idx
= forall e. Array e -> Int -> e -> Array e
update32 Array e
ary Int
idx forall a b. (a -> b) -> a -> b
$! e -> e
f e
x
{-# INLINE update32With' #-}
clone :: A.Array e -> ST s (A.MArray s e)
clone :: forall e s. Array e -> ST s (MArray s e)
clone Array e
ary =
forall e s. Array e -> Int -> Int -> ST s (MArray s e)
A.thaw Array e
ary Int
0 (Int
2forall a b. (Num a, Integral b) => a -> b -> a
^Int
bitsPerSubkey)
bitsPerSubkey :: Int
bitsPerSubkey :: Int
bitsPerSubkey = Int
5
maxChildren :: Int
maxChildren :: Int
maxChildren = Int
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
bitsPerSubkey
subkeyMask :: Word
subkeyMask :: Bitmap
subkeyMask = Bitmap
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
bitsPerSubkey forall a. Num a => a -> a -> a
- Bitmap
1
index :: Hash -> Shift -> Int
index :: Bitmap -> Int -> Int
index Bitmap
w Int
s = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall a. Bits a => a -> Int -> a
unsafeShiftR Bitmap
w Int
s forall a. Bits a => a -> a -> a
.&. Bitmap
subkeyMask
{-# INLINE index #-}
mask :: Hash -> Shift -> Bitmap
mask :: Bitmap -> Int -> Bitmap
mask Bitmap
w Int
s = Bitmap
1 forall a. Bits a => a -> Int -> a
`unsafeShiftL` Bitmap -> Int -> Int
index Bitmap
w Int
s
{-# INLINE mask #-}
sparseIndex
:: Bitmap
-> Bitmap
-> Int
sparseIndex :: Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m = forall a. Bits a => a -> Int
popCount (Bitmap
b forall a. Bits a => a -> a -> a
.&. (Bitmap
m forall a. Num a => a -> a -> a
- Bitmap
1))
{-# INLINE sparseIndex #-}
fullNodeMask :: Bitmap
fullNodeMask :: Bitmap
fullNodeMask = forall a. Bits a => a -> a
complement (forall a. Bits a => a -> a
complement Bitmap
0 forall a. Bits a => a -> Int -> a
`shiftL` Int
maxChildren)
{-# INLINE fullNodeMask #-}
ptrEq :: a -> a -> Bool
ptrEq :: forall a. a -> a -> Bool
ptrEq a
x a
y = Int# -> Bool
Exts.isTrue# (forall a. a -> a -> Int#
Exts.reallyUnsafePtrEquality# a
x a
y Int# -> Int# -> Int#
==# Int#
1#)
{-# INLINE ptrEq #-}
instance (Eq k, Hashable k) => Exts.IsList (HashMap k v) where
type Item (HashMap k v) = (k, v)
fromList :: [Item (HashMap k v)] -> HashMap k v
fromList = forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList
toList :: HashMap k v -> [Item (HashMap k v)]
toList = forall k v. HashMap k v -> [(k, v)]
toList