-- |
-- Module      : Crypto.KDF.HKDF
-- License     : BSD-style
-- Maintainer  : Vincent Hanquez <[email protected]>
-- Stability   : experimental
-- Portability : unknown
--
-- Key Derivation Function based on HMAC
--
-- See RFC5869
--
{-# LANGUAGE BangPatterns #-}
module Crypto.KDF.HKDF
    ( PRK
    , extract
    , extractSkip
    , expand
    ) where

import           Data.Word
import           Crypto.Hash
import           Crypto.MAC.HMAC
import           Crypto.Internal.ByteArray (ScrubbedBytes, ByteArray, ByteArrayAccess)
import qualified Crypto.Internal.ByteArray as B

-- | Pseudo Random Key
data PRK a = PRK (HMAC a) | PRK_NoExpand ScrubbedBytes
    deriving (PRK a -> PRK a -> Bool
forall a. PRK a -> PRK a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: PRK a -> PRK a -> Bool
$c/= :: forall a. PRK a -> PRK a -> Bool
== :: PRK a -> PRK a -> Bool
$c== :: forall a. PRK a -> PRK a -> Bool
Eq)

instance ByteArrayAccess (PRK a) where
    length :: PRK a -> Int
length (PRK HMAC a
hm)          = forall ba. ByteArrayAccess ba => ba -> Int
B.length HMAC a
hm
    length (PRK_NoExpand ScrubbedBytes
sb) = forall ba. ByteArrayAccess ba => ba -> Int
B.length ScrubbedBytes
sb
    withByteArray :: forall p a. PRK a -> (Ptr p -> IO a) -> IO a
withByteArray (PRK HMAC a
hm)          = forall ba p a. ByteArrayAccess ba => ba -> (Ptr p -> IO a) -> IO a
B.withByteArray HMAC a
hm
    withByteArray (PRK_NoExpand ScrubbedBytes
sb) = forall ba p a. ByteArrayAccess ba => ba -> (Ptr p -> IO a) -> IO a
B.withByteArray ScrubbedBytes
sb

-- | Extract a Pseudo Random Key using the parameter and the underlaying hash mechanism
extract :: (HashAlgorithm a, ByteArrayAccess salt, ByteArrayAccess ikm)
        => salt  -- ^ Salt
        -> ikm   -- ^ Input Keying Material
        -> PRK a -- ^ Pseudo random key
extract :: forall a salt ikm.
(HashAlgorithm a, ByteArrayAccess salt, ByteArrayAccess ikm) =>
salt -> ikm -> PRK a
extract salt
salt ikm
ikm = forall a. HMAC a -> PRK a
PRK forall a b. (a -> b) -> a -> b
$ forall key message a.
(ByteArrayAccess key, ByteArrayAccess message, HashAlgorithm a) =>
key -> message -> HMAC a
hmac salt
salt ikm
ikm

-- | Create a PRK directly from the input key material.
--
-- Only use when guaranteed to have a good quality and random data to use directly as key.
-- This effectively skip a HMAC with key=salt and data=key.
extractSkip :: ByteArrayAccess ikm
            => ikm
            -> PRK a
extractSkip :: forall ikm a. ByteArrayAccess ikm => ikm -> PRK a
extractSkip ikm
ikm = forall a. ScrubbedBytes -> PRK a
PRK_NoExpand forall a b. (a -> b) -> a -> b
$ forall bin bout.
(ByteArrayAccess bin, ByteArray bout) =>
bin -> bout
B.convert ikm
ikm

-- | Expand key material of specific length out of the parameters
expand :: (HashAlgorithm a, ByteArrayAccess info, ByteArray out)
       => PRK a      -- ^ Pseudo Random Key
       -> info       -- ^ Optional context and application specific information
       -> Int        -- ^ Output length in bytes
       -> out        -- ^ Output data
expand :: forall a info out.
(HashAlgorithm a, ByteArrayAccess info, ByteArray out) =>
PRK a -> info -> Int -> out
expand PRK a
prkAt info
infoAt Int
outputLength =
    let hF :: ScrubbedBytes -> HMAC a
hF = forall a b.
(HashAlgorithm a, ByteArrayAccess b) =>
PRK a -> b -> HMAC a
hFGet PRK a
prkAt
     in forall bin bout.
(ByteArrayAccess bin, ByteArray bout) =>
[bin] -> bout
B.concat forall a b. (a -> b) -> a -> b
$ forall a.
HashAlgorithm a =>
(ScrubbedBytes -> HMAC a)
-> ScrubbedBytes -> Int -> Word8 -> [ScrubbedBytes]
loop ScrubbedBytes -> HMAC a
hF forall a. ByteArray a => a
B.empty Int
outputLength Word8
1
  where
    hFGet :: (HashAlgorithm a, ByteArrayAccess b) => PRK a -> (b -> HMAC a)
    hFGet :: forall a b.
(HashAlgorithm a, ByteArrayAccess b) =>
PRK a -> b -> HMAC a
hFGet PRK a
prk = case PRK a
prk of
             PRK HMAC a
hmacKey      -> forall key message a.
(ByteArrayAccess key, ByteArrayAccess message, HashAlgorithm a) =>
key -> message -> HMAC a
hmac HMAC a
hmacKey
             PRK_NoExpand ScrubbedBytes
ikm -> forall key message a.
(ByteArrayAccess key, ByteArrayAccess message, HashAlgorithm a) =>
key -> message -> HMAC a
hmac ScrubbedBytes
ikm

    info :: ScrubbedBytes
    info :: ScrubbedBytes
info = forall bin bout.
(ByteArrayAccess bin, ByteArray bout) =>
bin -> bout
B.convert info
infoAt

    loop :: HashAlgorithm a
         => (ScrubbedBytes -> HMAC a)
         -> ScrubbedBytes
         -> Int
         -> Word8
         -> [ScrubbedBytes]
    loop :: forall a.
HashAlgorithm a =>
(ScrubbedBytes -> HMAC a)
-> ScrubbedBytes -> Int -> Word8 -> [ScrubbedBytes]
loop ScrubbedBytes -> HMAC a
hF ScrubbedBytes
tim1 Int
n Word8
i
        | Int
n forall a. Ord a => a -> a -> Bool
<= Int
0    = []
        | Bool
otherwise =
            let input :: ScrubbedBytes
input   = forall bin bout.
(ByteArrayAccess bin, ByteArray bout) =>
[bin] -> bout
B.concat [ScrubbedBytes
tim1,ScrubbedBytes
info,forall a. ByteArray a => Word8 -> a
B.singleton Word8
i] :: ScrubbedBytes
                ti :: ScrubbedBytes
ti      = forall bin bout.
(ByteArrayAccess bin, ByteArray bout) =>
bin -> bout
B.convert forall a b. (a -> b) -> a -> b
$ ScrubbedBytes -> HMAC a
hF ScrubbedBytes
input
                hashLen :: Int
hashLen = forall ba. ByteArrayAccess ba => ba -> Int
B.length ScrubbedBytes
ti
                r :: Int
r       = Int
n forall a. Num a => a -> a -> a
- Int
hashLen
             in (if Int
n forall a. Ord a => a -> a -> Bool
>= Int
hashLen then ScrubbedBytes
ti else forall bs. ByteArray bs => Int -> bs -> bs
B.take Int
n ScrubbedBytes
ti)
              forall a. a -> [a] -> [a]
: forall a.
HashAlgorithm a =>
(ScrubbedBytes -> HMAC a)
-> ScrubbedBytes -> Int -> Word8 -> [ScrubbedBytes]
loop ScrubbedBytes -> HMAC a
hF ScrubbedBytes
ti Int
r (Word8
iforall a. Num a => a -> a -> a
+Word8
1)