------------------------------------------------------------------------- -- | -- Module : Control.Monad.Logic.Class -- Copyright : (c) 2007-2014 Dan Doel, -- (c) 2011-2013 Edward Kmett, -- (c) 2014 Roman Cheplyaka, -- (c) 2020-2021 Andrew Lelechenko, -- (c) 2020-2021 Kevin Quick -- License : BSD3 -- Maintainer : Andrew Lelechenko <[email protected]> -- -- Adapted from the paper -- <http://okmij.org/ftp/papers/LogicT.pdf Backtracking, Interleaving, and Terminating Monad Transformers> -- by Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, Amr Sabry. -- Note that the paper uses 'MonadPlus' vocabulary -- ('mzero' and 'mplus'), -- while examples below prefer 'empty' and '<|>' -- from 'Alternative'. ------------------------------------------------------------------------- {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Safe #-} #endif module Control.Monad.Logic.Class (MonadLogic(..), reflect) where import Control.Applicative import Control.Monad import Control.Monad.Reader (ReaderT(..)) import Control.Monad.Trans (MonadTrans(..)) import qualified Control.Monad.State.Lazy as LazyST import qualified Control.Monad.State.Strict as StrictST -- | A backtracking, logic programming monad. class (Monad m, Alternative m) => MonadLogic m where -- | Attempts to __split__ the computation, giving access to the first -- result. Satisfies the following laws: -- -- > msplit empty == pure Nothing -- > msplit (pure a <|> m) == pure (Just (a, m)) msplit :: m a -> m (Maybe (a, m a)) -- | __Fair disjunction.__ It is possible for a logical computation -- to have an infinite number of potential results, for instance: -- -- > odds = pure 1 <|> fmap (+ 2) odds -- -- Such computations can cause problems in some circumstances. Consider: -- -- > two = do x <- odds <|> pure 2 -- > if even x then pure x else empty -- -- >>> observe two -- ...never completes... -- -- Such a computation may never consider 'pure' @2@, and -- therefore even 'Control.Monad.Logic.observe' @two@ will -- never return any results. By -- contrast, using 'interleave' in place of -- 'Control.Applicative.<|>' ensures fair consideration of both -- branches of a disjunction. -- -- > fairTwo = do x <- odds `interleave` pure 2 -- > if even x then pure x else empty -- -- >>> observe fairTwo -- 2 -- -- Note that even with 'interleave' this computation will never -- terminate after returning 2: only the first value can be -- safely observed, after which each odd value becomes 'Control.Applicative.empty' -- (equivalent to -- <http://lpn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse45 Prolog's fail>) -- which does not stop the evaluation but indicates there is no -- value to return yet. -- -- Unlike '<|>', 'interleave' is not associative: -- -- >>> let x = [1,2,3]; y = [4,5,6]; z = [7,8,9] :: [Int] -- >>> x `interleave` y -- [1,4,2,5,3,6] -- >>> (x `interleave` y) `interleave` z -- [1,7,4,8,2,9,5,3,6] -- >>> y `interleave` z -- [4,7,5,8,6,9] -- >>> x `interleave` (y `interleave` z) -- [1,4,2,7,3,5,8,6,9] -- interleave :: m a -> m a -> m a -- | __Fair conjunction.__ Similarly to the previous function, consider -- the distributivity law, naturally expected from 'MonadPlus': -- -- > (a <|> b) >>= k = (a >>= k) <|> (b >>= k) -- -- If @a@ '>>=' @k@ can backtrack arbitrarily many times, @b@ '>>=' @k@ -- may never be considered. In logic statements, -- "backtracking" is the process of discarding the current -- possible solution value and returning to a previous decision -- point where a new value can be obtained and tried. For -- example: -- -- >>> do { x <- pure 0 <|> pure 1 <|> pure 2; if even x then pure x else empty } :: [Int] -- [0,2] -- -- Here, the @x@ value can be produced three times, where -- 'Control.Applicative.<|>' represents the decision points of that -- production. The subsequent @if@ statement specifies -- 'Control.Applicative.empty' (fail) -- if @x@ is odd, causing it to be discarded and a return -- to an 'Control.Applicative.<|>' decision point to get the next @x@. -- -- The statement "@a@ '>>=' @k@ can backtrack arbitrarily many -- times" means that the computation is resulting in 'Control.Applicative.empty' and -- that @a@ has an infinite number of 'Control.Applicative.<|>' applications to -- return to. This is called a conjunctive computation because -- the logic for @a@ /and/ @k@ must both succeed (i.e. 'pure' -- a value instead of 'Control.Applicative.empty'). -- -- Similar to the way 'interleave' allows both branches of a -- disjunctive computation, the '>>-' operator takes care to -- consider both branches of a conjunctive computation. -- -- Consider the operation: -- -- > odds = pure 1 <|> fmap (2 +) odds -- > -- > oddsPlus n = odds >>= \a -> pure (a + n) -- > -- > g = do x <- (pure 0 <|> pure 1) >>= oddsPlus -- > if even x then pure x else empty -- -- >>> observeMany 3 g -- ...never completes... -- -- This will never produce any value because all values produced -- by the @do@ program come from the 'pure' @1@ driven operation -- (adding one to the sequence of odd values, resulting in the -- even values that are allowed by the test in the second line), -- but the 'pure' @0@ input to @oddsPlus@ generates an infinite -- number of 'Control.Applicative.empty' failures so the even values generated by -- the 'pure' @1@ alternative are never seen. Using -- 'interleave' here instead of 'Control.Applicative.<|>' does not help due -- to the aforementioned distributivity law. -- -- Also note that the @do@ notation desugars to '>>=' bind -- operations, so the following would also fail: -- -- > do a <- pure 0 <|> pure 1 -- > x <- oddsPlus a -- > if even x then pure x else empty -- -- The solution is to use the '>>-' in place of the normal -- monadic bind operation '>>=' when fairness between -- alternative productions is needed in a conjunction of -- statements (rules): -- -- > h = do x <- (pure 0 <|> pure 1) >>- oddsPlus -- > if even x then pure x else empty -- -- >>> observeMany 3 h -- [2,4,6] -- -- However, a bit of care is needed when using '>>-' because, -- unlike '>>=', it is not associative. For example: -- -- >>> let m = [2,7] :: [Int] -- >>> let k x = [x, x + 1] -- >>> let h x = [x, x * 2] -- >>> m >>= (\x -> k x >>= h) -- [2,4,3,6,7,14,8,16] -- >>> (m >>= k) >>= h -- same as above -- [2,4,3,6,7,14,8,16] -- >>> m >>- (\x -> k x >>- h) -- [2,7,3,8,4,14,6,16] -- >>> (m >>- k) >>- h -- central elements are different -- [2,7,4,3,14,8,6,16] -- -- This means that the following will be productive: -- -- > (pure 0 <|> pure 1) >>- -- > oddsPlus >>- -- > \x -> if even x then pure x else empty -- -- Which is equivalent to -- -- > ((pure 0 <|> pure 1) >>- oddsPlus) >>- -- > (\x -> if even x then pure x else empty) -- -- But the following will /not/ be productive: -- -- > (pure 0 <|> pure 1) >>- -- > (\a -> (oddsPlus a >>- \x -> if even x then pure x else empty)) -- -- Since do notation desugaring results in the latter, the -- @RebindableSyntax@ language pragma cannot easily be used -- either. Instead, it is recommended to carefully use explicit -- '>>-' only when needed. -- (>>-) :: m a -> (a -> m b) -> m b infixl 1 >>- -- | __Pruning.__ Selects one result out of many. Useful for when multiple -- results of a computation will be equivalent, or should be treated as -- such. -- -- As an example, here's a way to determine if a number is -- <https://wikipedia.org/wiki/Composite_number composite> -- (has non-trivial integer divisors, i.e. not a -- prime number): -- -- > choose = foldr ((<|>) . pure) empty -- > -- > divisors n = do a <- choose [2..n-1] -- > b <- choose [2..n-1] -- > guard (a * b == n) -- > pure (a, b) -- > -- > composite_ v = do _ <- divisors v -- > pure "Composite" -- -- While this works as intended, it actually does too much work: -- -- >>> observeAll (composite_ 20) -- ["Composite", "Composite", "Composite", "Composite"] -- -- Because there are multiple divisors of 20, and they can also -- occur in either order: -- -- >>> observeAll (divisors 20) -- [(2,10), (4,5), (5,4), (10,2)] -- -- Clearly one could just use 'Control.Monad.Logic.observe' here to get the first -- non-prime result, but if the call to @composite@ is in the -- middle of other logic code then use 'once' instead. -- -- > composite v = do _ <- once (divisors v) -- > pure "Composite" -- -- >>> observeAll (composite 20) -- ["Composite"] -- once :: m a -> m a -- | __Inverts__ a logic computation. If @m@ succeeds with at least one value, -- 'lnot' @m@ fails. If @m@ fails, then 'lnot' @m@ succeeds with the value @()@. -- -- For example, evaluating if a number is prime can be based on -- the failure to find divisors of a number: -- -- > choose = foldr ((<|>) . pure) empty -- > -- > divisors n = do d <- choose [2..n-1] -- > guard (n `rem` d == 0) -- > pure d -- > -- > prime v = do _ <- lnot (divisors v) -- > pure True -- -- >>> observeAll (prime 20) -- [] -- >>> observeAll (prime 19) -- [True] -- -- Here if @divisors@ never succeeds, then the 'lnot' will -- succeed and the number will be declared as prime. lnot :: m a -> m () -- | Logical __conditional.__ The equivalent of -- <http://lpn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse44 Prolog's soft-cut>. -- If its first argument succeeds at all, -- then the results will be fed into the success -- branch. Otherwise, the failure branch is taken. The failure -- branch is never considered if the first argument has any -- successes. The 'ifte' function satisfies the following laws: -- -- > ifte (pure a) th el == th a -- > ifte empty th el == el -- > ifte (pure a <|> m) th el == th a <|> (m >>= th) -- -- For example, the previous @prime@ function returned nothing -- if the number was not prime, but if it should return 'False' -- instead, the following can be used: -- -- > choose = foldr ((<|>) . pure) empty -- > -- > divisors n = do d <- choose [2..n-1] -- > guard (n `rem` d == 0) -- > pure d -- > -- > prime v = once (ifte (divisors v) -- > (const (pure False)) -- > (pure True)) -- -- >>> observeAll (prime 20) -- [False] -- >>> observeAll (prime 19) -- [True] -- -- Notice that this cannot be done with a simple @if-then-else@ -- because @divisors@ either generates values or it does not, so -- there's no "false" condition to check with a simple @if@ -- statement. ifte :: m a -> (a -> m b) -> m b -> m b -- All the class functions besides msplit can be derived from msplit, if -- desired interleave m a m1 m a m2 = forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit m a m1 forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= forall b a. b -> (a -> b) -> Maybe a -> b maybe m a m2 (\(a a, m a m1') -> forall (f :: * -> *) a. Applicative f => a -> f a pure a a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a <|> forall (m :: * -> *) a. MonadLogic m => m a -> m a -> m a interleave m a m2 m a m1') m a m >>- a -> m b f = forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit m a m forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= forall b a. b -> (a -> b) -> Maybe a -> b maybe forall (f :: * -> *) a. Alternative f => f a empty (\(a a, m a m') -> forall (m :: * -> *) a. MonadLogic m => m a -> m a -> m a interleave (a -> m b f a a) (m a m' forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b >>- a -> m b f)) ifte m a t a -> m b th m b el = forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit m a t forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= forall b a. b -> (a -> b) -> Maybe a -> b maybe m b el (\(a a,m a m) -> a -> m b th a a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a <|> (m a m forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= a -> m b th)) once m a m = forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit m a m forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= forall b a. b -> (a -> b) -> Maybe a -> b maybe forall (f :: * -> *) a. Alternative f => f a empty (\(a a, m a _) -> forall (f :: * -> *) a. Applicative f => a -> f a pure a a) lnot m a m = forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit m a m forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= forall b a. b -> (a -> b) -> Maybe a -> b maybe (forall (f :: * -> *) a. Applicative f => a -> f a pure ()) (forall a b. a -> b -> a const forall (f :: * -> *) a. Alternative f => f a empty) ------------------------------------------------------------------------------- -- | The inverse of 'msplit'. Satisfies the following law: -- -- > msplit m >>= reflect == m reflect :: Alternative m => Maybe (a, m a) -> m a reflect :: forall (m :: * -> *) a. Alternative m => Maybe (a, m a) -> m a reflect Maybe (a, m a) Nothing = forall (f :: * -> *) a. Alternative f => f a empty reflect (Just (a a, m a m)) = forall (f :: * -> *) a. Applicative f => a -> f a pure a a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a <|> m a m -- An instance of MonadLogic for lists instance MonadLogic [] where msplit :: forall a. [a] -> [Maybe (a, [a])] msplit [] = forall (f :: * -> *) a. Applicative f => a -> f a pure forall a. Maybe a Nothing msplit (a x:[a] xs) = forall (f :: * -> *) a. Applicative f => a -> f a pure forall a b. (a -> b) -> a -> b $ forall a. a -> Maybe a Just (a x, [a] xs) -- | Note that splitting a transformer does -- not allow you to provide different input -- to the monadic object returned. -- For instance, in: -- -- > let Just (_, rm') = runReaderT (msplit rm) r in runReaderT rm' r' -- -- @r'@ will be ignored, because @r@ was already threaded through the -- computation. instance MonadLogic m => MonadLogic (ReaderT e m) where msplit :: forall a. ReaderT e m a -> ReaderT e m (Maybe (a, ReaderT e m a)) msplit ReaderT e m a rm = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a ReaderT forall a b. (a -> b) -> a -> b $ \e e -> do Maybe (a, m a) r <- forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit forall a b. (a -> b) -> a -> b $ forall r (m :: * -> *) a. ReaderT r m a -> r -> m a runReaderT ReaderT e m a rm e e case Maybe (a, m a) r of Maybe (a, m a) Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a pure forall a. Maybe a Nothing Just (a a, m a m) -> forall (f :: * -> *) a. Applicative f => a -> f a pure (forall a. a -> Maybe a Just (a a, forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. (MonadTrans t, Monad m) => m a -> t m a lift m a m)) -- | See note on splitting above. instance (MonadLogic m, MonadPlus m) => MonadLogic (StrictST.StateT s m) where msplit :: forall a. StateT s m a -> StateT s m (Maybe (a, StateT s m a)) msplit StateT s m a sm = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a StrictST.StateT forall a b. (a -> b) -> a -> b $ \s s -> do Maybe ((a, s), m (a, s)) r <- forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m a sm s s) case Maybe ((a, s), m (a, s)) r of Maybe ((a, s), m (a, s)) Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a pure (forall a. Maybe a Nothing, s s) Just ((a a,s s'), m (a, s) m) -> forall (f :: * -> *) a. Applicative f => a -> f a pure (forall a. a -> Maybe a Just (a a, forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a StrictST.StateT (forall a b. a -> b -> a const m (a, s) m)), s s') interleave :: forall a. StateT s m a -> StateT s m a -> StateT s m a interleave StateT s m a ma StateT s m a mb = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a StrictST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m a ma s s forall (m :: * -> *) a. MonadLogic m => m a -> m a -> m a `interleave` forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m a mb s s StateT s m a ma >>- :: forall a b. StateT s m a -> (a -> StateT s m b) -> StateT s m b >>- a -> StateT s m b f = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a StrictST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m a ma s s forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b >>- \(a a,s s') -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT (a -> StateT s m b f a a) s s' ifte :: forall a b. StateT s m a -> (a -> StateT s m b) -> StateT s m b -> StateT s m b ifte StateT s m a t a -> StateT s m b th StateT s m b el = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a StrictST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b -> m b ifte (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m a t s s) (\(a a,s s') -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT (a -> StateT s m b th a a) s s') (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m b el s s) once :: forall a. StateT s m a -> StateT s m a once StateT s m a ma = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a StrictST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall (m :: * -> *) a. MonadLogic m => m a -> m a once (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) StrictST.runStateT StateT s m a ma s s) -- | See note on splitting above. instance (MonadLogic m, MonadPlus m) => MonadLogic (LazyST.StateT s m) where msplit :: forall a. StateT s m a -> StateT s m (Maybe (a, StateT s m a)) msplit StateT s m a sm = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a LazyST.StateT forall a b. (a -> b) -> a -> b $ \s s -> do Maybe ((a, s), m (a, s)) r <- forall (m :: * -> *) a. MonadLogic m => m a -> m (Maybe (a, m a)) msplit (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m a sm s s) case Maybe ((a, s), m (a, s)) r of Maybe ((a, s), m (a, s)) Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a pure (forall a. Maybe a Nothing, s s) Just ((a a,s s'), m (a, s) m) -> forall (f :: * -> *) a. Applicative f => a -> f a pure (forall a. a -> Maybe a Just (a a, forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a LazyST.StateT (forall a b. a -> b -> a const m (a, s) m)), s s') interleave :: forall a. StateT s m a -> StateT s m a -> StateT s m a interleave StateT s m a ma StateT s m a mb = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a LazyST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m a ma s s forall (m :: * -> *) a. MonadLogic m => m a -> m a -> m a `interleave` forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m a mb s s StateT s m a ma >>- :: forall a b. StateT s m a -> (a -> StateT s m b) -> StateT s m b >>- a -> StateT s m b f = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a LazyST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m a ma s s forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b >>- \(a a,s s') -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT (a -> StateT s m b f a a) s s' ifte :: forall a b. StateT s m a -> (a -> StateT s m b) -> StateT s m b -> StateT s m b ifte StateT s m a t a -> StateT s m b th StateT s m b el = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a LazyST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b -> m b ifte (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m a t s s) (\(a a,s s') -> forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT (a -> StateT s m b th a a) s s') (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m b el s s) once :: forall a. StateT s m a -> StateT s m a once StateT s m a ma = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a LazyST.StateT forall a b. (a -> b) -> a -> b $ \s s -> forall (m :: * -> *) a. MonadLogic m => m a -> m a once (forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s) LazyST.runStateT StateT s m a ma s s)