{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
module Data.Functor.Plus
  ( Plus(..)
  , psum
  , module Data.Functor.Alt
  ) where
import Control.Applicative hiding (some, many)
import Control.Applicative.Backwards
import Control.Applicative.Lift
import Control.Arrow
import Control.Monad
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Except
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.Reader
#if MIN_VERSION_transformers(0,5,6)
import qualified Control.Monad.Trans.RWS.CPS as CPS
import qualified Control.Monad.Trans.Writer.CPS as CPS
import Semigroupoids.Internal
#endif
import qualified Control.Monad.Trans.RWS.Strict as Strict
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Strict as Strict
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import Data.Foldable hiding (asum)
import Data.Functor.Apply
import Data.Functor.Alt
import Data.Functor.Compose
import Data.Functor.Product
import Data.Functor.Reverse
import qualified Data.Monoid as Monoid
import Data.Semigroup hiding (Product)
import Prelude hiding (id, (.), foldr)
#if !(MIN_VERSION_transformers(0,6,0))
import Control.Monad.Trans.Error
import Control.Monad.Trans.List
#endif
#ifdef MIN_VERSION_containers
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import Data.Sequence (Seq)
import qualified Data.Map as Map
import Data.Map (Map)
#endif
#if defined(MIN_VERSION_tagged) || (MIN_VERSION_base(4,7,0))
import Data.Proxy
#endif
#ifdef MIN_VERSION_unordered_containers
import Data.Hashable
import Data.HashMap.Lazy (HashMap)
import qualified Data.HashMap.Lazy as HashMap
#endif
#ifdef MIN_VERSION_generic_deriving
import Generics.Deriving.Base
#else
import GHC.Generics
#endif
class Alt f => Plus f where
  zero :: f a
psum :: (Foldable t, Plus f) => t (f a) -> f a
psum :: forall (t :: * -> *) (f :: * -> *) a.
(Foldable t, Plus f) =>
t (f a) -> f a
psum = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr forall (f :: * -> *) a. Alt f => f a -> f a -> f a
(<!>) forall (f :: * -> *) a. Plus f => f a
zero
instance Plus Proxy where
  zero :: forall a. Proxy a
zero = forall {k} (t :: k). Proxy t
Proxy
instance Plus U1 where
  zero :: forall a. U1 a
zero = forall k (p :: k). U1 p
U1
instance (Plus f, Plus g) => Plus (f :*: g) where
  zero :: forall a. (:*:) f g a
zero = forall (f :: * -> *) a. Plus f => f a
zero forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (M1 i c f) where
  zero :: forall a. M1 i c f a
zero = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Rec1 f) where
  zero :: forall a. Rec1 f a
zero = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall (f :: * -> *) a. Plus f => f a
zero
instance Plus IO where
  zero :: forall a. IO a
zero = forall a. HasCallStack => [Char] -> a
error [Char]
"zero"
instance Plus [] where
  zero :: forall a. [a]
zero = []
instance Plus Maybe where
  zero :: forall a. Maybe a
zero = forall a. Maybe a
Nothing
#if !(MIN_VERSION_base(4,16,0))
instance Plus Option where
  zero = empty
#endif
instance MonadPlus m => Plus (WrappedMonad m) where
  zero :: forall a. WrappedMonad m a
zero = forall (f :: * -> *) a. Alternative f => f a
empty
instance ArrowPlus a => Plus (WrappedArrow a b) where
  zero :: forall a. WrappedArrow a b a
zero = forall (f :: * -> *) a. Alternative f => f a
empty
#ifdef MIN_VERSION_containers
instance Ord k => Plus (Map k) where
  zero :: forall a. Map k a
zero = forall k a. Map k a
Map.empty
instance Plus IntMap where
  zero :: forall a. IntMap a
zero = forall a. IntMap a
IntMap.empty
instance Plus Seq where
  zero :: forall a. Seq a
zero = forall a. Monoid a => a
mempty
#endif
#ifdef MIN_VERSION_unordered_containers
instance (Hashable k, Eq k) => Plus (HashMap k) where
  zero :: forall a. HashMap k a
zero = forall k v. HashMap k v
HashMap.empty
#endif
instance Alternative f => Plus (WrappedApplicative f) where
  zero :: forall a. WrappedApplicative f a
zero = forall (f :: * -> *) a. Alternative f => f a
empty
instance Plus f => Plus (IdentityT f) where
  zero :: forall a. IdentityT f a
zero = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (ReaderT e f) where
  zero :: forall a. ReaderT e f a
zero = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \e
_ -> forall (f :: * -> *) a. Plus f => f a
zero
instance (Functor f, Monad f) => Plus (MaybeT f) where
  zero :: forall a. MaybeT f a
zero = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Monad m => a -> m a
return forall (f :: * -> *) a. Plus f => f a
zero
#if !(MIN_VERSION_transformers(0,6,0))
instance (Functor f, Monad f, Error e) => Plus (ErrorT e f) where
  zero :: forall a. ErrorT e f a
zero = forall e (m :: * -> *) a. m (Either e a) -> ErrorT e m a
ErrorT forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. a -> Either a b
Left forall a. Error a => a
noMsg
instance (Apply f, Applicative f) => Plus (ListT f) where
  zero :: forall a. ListT f a
zero = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a. Applicative f => a -> f a
pure []
#endif
instance (Functor f, Monad f, Semigroup e, Monoid e) => Plus (ExceptT e f) where
  zero :: forall a. ExceptT e f a
zero = forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. a -> Either a b
Left forall a. Monoid a => a
mempty
instance Plus f => Plus (Strict.StateT e f) where
  zero :: forall a. StateT e f a
zero = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \e
_ -> forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Lazy.StateT e f) where
  zero :: forall a. StateT e f a
zero = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \e
_ -> forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Strict.WriterT w f) where
  zero :: forall a. WriterT w f a
zero = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Lazy.WriterT w f) where
  zero :: forall a. WriterT w f a
zero = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall (f :: * -> *) a. Plus f => f a
zero
#if MIN_VERSION_transformers(0,5,6)
instance (Plus f) => Plus (CPS.WriterT w f) where
  zero :: forall a. WriterT w f a
zero = forall w (m :: * -> *) a. (w -> m (a, w)) -> WriterT w m a
mkWriterT forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const forall (f :: * -> *) a. Plus f => f a
zero
#endif
instance Plus f => Plus (Strict.RWST r w s f) where
  zero :: forall a. RWST r w s f a
zero = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ -> forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Lazy.RWST r w s f) where
  zero :: forall a. RWST r w s f a
zero = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ -> forall (f :: * -> *) a. Plus f => f a
zero
#if MIN_VERSION_transformers(0,5,6)
instance (Plus f) => Plus (CPS.RWST r w s f) where
  zero :: forall a. RWST r w s f a
zero = forall r s w (m :: * -> *) a.
(r -> s -> w -> m (a, s, w)) -> RWST r w s m a
mkRWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ w
_ -> forall (f :: * -> *) a. Plus f => f a
zero 
#endif
instance Plus f => Plus (Backwards f) where
  zero :: forall a. Backwards f a
zero = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards forall (f :: * -> *) a. Plus f => f a
zero
instance (Plus f, Functor g) => Plus (Compose f g) where
  zero :: forall a. Compose f g a
zero = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Lift f) where
  zero :: forall a. Lift f a
zero = forall (f :: * -> *) a. f a -> Lift f a
Other forall (f :: * -> *) a. Plus f => f a
zero
instance (Plus f, Plus g) => Plus (Product f g) where
  zero :: forall a. Product f g a
zero = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair forall (f :: * -> *) a. Plus f => f a
zero forall (f :: * -> *) a. Plus f => f a
zero
instance Plus f => Plus (Reverse f) where
  zero :: forall a. Reverse f a
zero = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse forall (f :: * -> *) a. Plus f => f a
zero
instance Plus Monoid.First where
  zero :: forall a. First a
zero = forall a. Maybe a -> First a
Monoid.First forall a. Maybe a
Nothing
instance Plus Monoid.Last where
  zero :: forall a. Last a
zero = forall a. Maybe a -> Last a
Monoid.Last forall a. Maybe a
Nothing