{-# LANGUAGE QuantifiedConstraints #-}
{-# OPTIONS_GHC -Wno-orphans #-}
module Plutarch.Extra.Const (
PConst (..),
preconst,
) where
import Plutarch.Extra.Applicative (PApplicative (ppure), PApply (pliftA2))
import Plutarch.Extra.Boring (PBoring (pboring))
import Plutarch.Extra.Functor (
PBifunctor (PSubcategoryLeft, PSubcategoryRight, pbimap, psecond),
PFunctor (PSubcategory, pfmap),
Plut,
)
import Plutarch.Extra.TermCont (pmatchC)
import Plutarch.Num (PNum)
import Plutarch.Unsafe (punsafeCoerce)
newtype PConst (a :: S -> Type) (b :: S -> Type) (s :: S)
= PConst (Term s a)
deriving stock
(
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (a :: PType) (b :: PType) (s :: S) x.
Rep (PConst a b s) x -> PConst a b s
forall (a :: PType) (b :: PType) (s :: S) x.
PConst a b s -> Rep (PConst a b s) x
$cto :: forall (a :: PType) (b :: PType) (s :: S) x.
Rep (PConst a b s) x -> PConst a b s
$cfrom :: forall (a :: PType) (b :: PType) (s :: S) x.
PConst a b s -> Rep (PConst a b s) x
Generic
)
deriving anyclass
(
forall (a :: PType).
(forall (s :: S). a s -> Term s (PInner a))
-> (forall (s :: S) (b :: PType).
Term s (PInner a) -> (a s -> Term s b) -> Term s b)
-> PlutusType a
forall (a :: PType) (b :: PType) (s :: S).
PConst a b s -> Term s (PInner (PConst a b))
forall (a :: PType) (b :: PType) (s :: S) (b :: PType).
Term s (PInner (PConst a b))
-> (PConst a b s -> Term s b) -> Term s b
pmatch' :: forall (s :: S) (b :: PType).
Term s (PInner (PConst a b))
-> (PConst a b s -> Term s b) -> Term s b
$cpmatch' :: forall (a :: PType) (b :: PType) (s :: S) (b :: PType).
Term s (PInner (PConst a b))
-> (PConst a b s -> Term s b) -> Term s b
pcon' :: forall (s :: S). PConst a b s -> Term s (PInner (PConst a b))
$cpcon' :: forall (a :: PType) (b :: PType) (s :: S).
PConst a b s -> Term s (PInner (PConst a b))
PlutusType
)
instance DerivePlutusType (PConst a b) where
type DPTStrat _ = PlutusTypeNewtype
deriving anyclass instance (PIsData a) => (PIsData (PConst a b))
deriving anyclass instance (PEq a) => PEq (PConst a b)
deriving anyclass instance (POrd a) => PPartialOrd (PConst a b)
deriving anyclass instance (POrd a) => POrd (PConst a b)
deriving anyclass instance (PIntegral a) => PIntegral (PConst a b)
deriving anyclass instance (PNum a) => PNum (PConst a b)
deriving anyclass instance (PShow a) => PShow (PConst a b)
instance PFunctor (PConst a) where
type PSubcategory (PConst a) = Plut
pfmap :: forall (a :: PType) (b :: PType) (s :: S).
(PSubcategory (PConst a) a, PSubcategory (PConst a) b) =>
Term s ((a :--> b) :--> (PConst a a :--> PConst a b))
pfmap = forall (f :: PType -> PType -> PType) (a :: PType) (b :: PType)
(d :: PType) (s :: S).
(PBifunctor f, PSubcategoryLeft f a, PSubcategoryRight f b,
PSubcategoryRight f d) =>
Term s ((b :--> d) :--> (f a b :--> f a d))
psecond
instance PBifunctor PConst where
type PSubcategoryLeft PConst = Plut
type PSubcategoryRight PConst = Plut
pbimap :: forall (a :: PType) (b :: PType) (c :: PType) (d :: PType)
(s :: S).
(PSubcategoryLeft PConst a, PSubcategoryLeft PConst c,
PSubcategoryRight PConst b, PSubcategoryRight PConst d) =>
Term
s ((a :--> c) :--> ((b :--> d) :--> (PConst a b :--> PConst c d)))
pbimap = forall (a :: PType) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic forall a b. (a -> b) -> a -> b
$
forall a (b :: PType) (s :: S) (c :: PType).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
plam forall a b. (a -> b) -> a -> b
$ \Term s (a :--> c)
f Term s (b :--> d)
_ Term s (PConst a b)
t -> forall (a :: PType) (s :: S). TermCont s (Term s a) -> Term s a
unTermCont forall a b. (a -> b) -> a -> b
$ do
PConst Term s a
tx <- forall {r :: PType} (a :: PType) (s :: S).
PlutusType a =>
Term s a -> TermCont s (a s)
pmatchC Term s (PConst a b)
t
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (a :: PType) (b :: PType) (s :: S). Term s a -> PConst a b s
PConst forall a b. (a -> b) -> a -> b
$ Term s (a :--> c)
f forall (s :: S) (a :: PType) (b :: PType).
HasCallStack =>
Term s (a :--> b) -> Term s a -> Term s b
# Term s a
tx
instance
(forall (s :: S). Semigroup (Term s a)) =>
PApply (PConst a)
where
pliftA2 :: forall (a :: PType) (b :: PType) (c :: PType) (s :: S).
(PSubcategory (PConst a) a, PSubcategory (PConst a) b,
PSubcategory (PConst a) c) =>
Term
s
((a :--> (b :--> c))
:--> (PConst a a :--> (PConst a b :--> PConst a c)))
pliftA2 = forall (a :: PType) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic forall a b. (a -> b) -> a -> b
$
forall a (b :: PType) (s :: S) (c :: PType).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
plam forall a b. (a -> b) -> a -> b
$ \Term s (a :--> (b :--> c))
_ Term s (PConst a a)
xs Term s (PConst a b)
ys -> forall (a :: PType) (s :: S). TermCont s (Term s a) -> Term s a
unTermCont forall a b. (a -> b) -> a -> b
$ do
PConst Term s a
tx <- forall {r :: PType} (a :: PType) (s :: S).
PlutusType a =>
Term s a -> TermCont s (a s)
pmatchC Term s (PConst a a)
xs
PConst Term s a
ty <- forall {r :: PType} (a :: PType) (s :: S).
PlutusType a =>
Term s a -> TermCont s (a s)
pmatchC Term s (PConst a b)
ys
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (a :: PType) (b :: PType) (s :: S). Term s a -> PConst a b s
PConst forall a b. (a -> b) -> a -> b
$ Term s a
tx forall a. Semigroup a => a -> a -> a
<> Term s a
ty
instance
(forall (s :: S). Monoid (Term s a)) =>
PApplicative (PConst a)
where
ppure :: forall (a :: PType) (s :: S).
PSubcategory (PConst a) a =>
Term s (a :--> PConst a a)
ppure = forall (a :: PType) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic forall a b. (a -> b) -> a -> b
$ forall a (b :: PType) (s :: S) (c :: PType).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
plam forall a b. (a -> b) -> a -> b
$ \Term s a
_ -> forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (a :: PType) (b :: PType) (s :: S). Term s a -> PConst a b s
PConst forall a b. (a -> b) -> a -> b
$ forall a. Monoid a => a
mempty
instance (PBoring a) => PBoring (PConst a b) where
pboring :: forall (s :: S). Term s (PConst a b)
pboring = forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (a :: PType) (b :: PType) (s :: S). Term s a -> PConst a b s
PConst forall a b. (a -> b) -> a -> b
$ forall (a :: PType) (s :: S). PBoring a => Term s a
pboring
preconst ::
forall (c :: S -> Type) (a :: S -> Type) (b :: S -> Type) (s :: S).
Term s (PConst a b) ->
Term s (PConst a c)
preconst :: forall (c :: PType) (a :: PType) (b :: PType) (s :: S).
Term s (PConst a b) -> Term s (PConst a c)
preconst = forall (s :: S) (a :: PType) (b :: PType). Term s a -> Term s b
punsafeCoerce