{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE Trustworthy #-} #include "lens-common.h" {-# OPTIONS_GHC -Wno-orphans #-} ---------------------------------------------------------------------------- -- | -- Module : Control.Lens.Fold -- Copyright : (C) 2012-16 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <[email protected]> -- Stability : provisional -- Portability : Rank2Types -- -- A @'Fold' s a@ is a generalization of something 'Foldable'. It allows -- you to extract multiple results from a container. A 'Foldable' container -- can be characterized by the behavior of -- @'Data.Foldable.foldMap' :: ('Foldable' t, 'Monoid' m) => (a -> m) -> t a -> m@. -- Since we want to be able to work with monomorphic containers, we could -- generalize this signature to @forall m. 'Monoid' m => (a -> m) -> s -> m@, -- and then decorate it with 'Const' to obtain -- -- @type 'Fold' s a = forall m. 'Monoid' m => 'Getting' m s a@ -- -- Every 'Getter' is a valid 'Fold' that simply doesn't use the 'Monoid' -- it is passed. -- -- In practice the type we use is slightly more complicated to allow for -- better error messages and for it to be transformed by certain -- 'Applicative' transformers. -- -- Everything you can do with a 'Foldable' container, you can with with a 'Fold' and there are -- combinators that generalize the usual 'Foldable' operations here. ---------------------------------------------------------------------------- module Control.Lens.Fold ( -- * Folds Fold , IndexedFold -- * Getting Started , (^..) , (^?) , (^?!) , pre, ipre , preview, previews, ipreview, ipreviews , preuse, preuses, ipreuse, ipreuses , has, hasn't -- ** Building Folds , folding, ifolding , foldring, ifoldring , folded , folded64 , unfolded , iterated , filtered , filteredBy , backwards , repeated , replicated , cycled , takingWhile , droppingWhile , worded, lined -- ** Folding , foldMapOf, foldOf , foldrOf, foldlOf , toListOf, toNonEmptyOf , anyOf, allOf, noneOf , andOf, orOf , productOf, sumOf , traverseOf_, forOf_, sequenceAOf_ , traverse1Of_, for1Of_, sequence1Of_ , mapMOf_, forMOf_, sequenceOf_ , asumOf, msumOf , concatMapOf, concatOf , elemOf, notElemOf , lengthOf , nullOf, notNullOf , firstOf, first1Of, lastOf, last1Of , maximumOf, maximum1Of, minimumOf, minimum1Of , maximumByOf, minimumByOf , findOf , findMOf , foldrOf', foldlOf' , foldr1Of, foldl1Of , foldr1Of', foldl1Of' , foldrMOf, foldlMOf , lookupOf -- * Indexed Folds , (^@..) , (^@?) , (^@?!) -- ** Indexed Folding , ifoldMapOf , ifoldrOf , ifoldlOf , ianyOf , iallOf , inoneOf , itraverseOf_ , iforOf_ , imapMOf_ , iforMOf_ , iconcatMapOf , ifindOf , ifindMOf , ifoldrOf' , ifoldlOf' , ifoldrMOf , ifoldlMOf , itoListOf , elemIndexOf , elemIndicesOf , findIndexOf , findIndicesOf -- ** Building Indexed Folds , ifiltered , itakingWhile , idroppingWhile -- * Internal types , Leftmost , Rightmost , Traversed , Sequenced -- * Fold with Reified Monoid , foldBy , foldByOf , foldMapBy , foldMapByOf ) where import Prelude () import Control.Applicative.Backwards import Control.Comonad import Control.Lens.Getter import Control.Lens.Internal.Fold import Control.Lens.Internal.Getter import Control.Lens.Internal.Indexed import Control.Lens.Internal.Magma import Control.Lens.Internal.Prelude import Control.Lens.Type import Control.Monad as Monad import Control.Monad.Reader import Control.Monad.State import Data.CallStack import Data.Functor.Apply hiding ((<.)) import Data.Int (Int64) import Data.List (intercalate) import Data.Maybe (fromMaybe) import Data.Monoid (First (..), All (..), Any (..)) import Data.Reflection import qualified Data.Semigroup as Semi -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- >>> import Control.Lens.Extras (is) -- >>> import Data.Function -- >>> import Data.List.Lens -- >>> import Data.List.NonEmpty (NonEmpty (..)) -- >>> import Debug.SimpleReflect.Expr -- >>> import Debug.SimpleReflect.Vars as Vars hiding (f,g) -- >>> import Control.DeepSeq (NFData (..), force) -- >>> import Control.Exception (evaluate) -- >>> import Data.Maybe (fromMaybe) -- >>> import Data.Monoid (Sum (..)) -- >>> import System.Timeout (timeout) -- >>> import qualified Data.Map as Map -- >>> let f :: Expr -> Expr; f = Debug.SimpleReflect.Vars.f -- >>> let g :: Expr -> Expr; g = Debug.SimpleReflect.Vars.g -- >>> let timingOut :: NFData a => a -> IO a; timingOut = fmap (fromMaybe (error "timeout")) . timeout (5*10^6) . evaluate . force infixl 8 ^.., ^?, ^?!, ^@.., ^@?, ^@?! -------------------------- -- Folds -------------------------- -- | Obtain a 'Fold' by lifting an operation that returns a 'Foldable' result. -- -- This can be useful to lift operations from @Data.List@ and elsewhere into a 'Fold'. -- -- >>> [1,2,3,4]^..folding tail -- [2,3,4] folding :: Foldable f => (s -> f a) -> Fold s a folding :: forall (f :: * -> *) s a. Foldable f => (s -> f a) -> Fold s a folding s -> f a sfa a -> f a agb = forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (t :: * -> *) (f :: * -> *) a b. (Foldable t, Applicative f) => (a -> f b) -> t a -> f () traverse_ a -> f a agb forall b c a. (b -> c) -> (a -> b) -> a -> c . s -> f a sfa {-# INLINE folding #-} ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b ifolding :: forall (f :: * -> *) i (p :: * -> * -> *) (g :: * -> *) s a t b. (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b ifolding s -> f (i, a) sfa p a (g b) f = forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (t :: * -> *) (f :: * -> *) a b. (Foldable t, Applicative f) => (a -> f b) -> t a -> f () traverse_ (forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a b c. (a -> b -> c) -> (a, b) -> c uncurry (forall i (p :: * -> * -> *) a b. Indexable i p => p a b -> i -> a -> b indexed p a (g b) f)) forall b c a. (b -> c) -> (a -> b) -> a -> c . s -> f (i, a) sfa {-# INLINE ifolding #-} -- | Obtain a 'Fold' by lifting 'foldr' like function. -- -- >>> [1,2,3,4]^..foldring foldr -- [1,2,3,4] foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b foldring :: forall (f :: * -> *) a s t b. (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b foldring (a -> f a -> f a) -> f a -> s -> f a fr a -> f b f = forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom forall b c a. (b -> c) -> (a -> b) -> a -> c . (a -> f a -> f a) -> f a -> s -> f a fr (\a a f a fa -> a -> f b f a a forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b *> f a fa) forall (f :: * -> *) a. (Contravariant f, Applicative f) => f a noEffect {-# INLINE foldring #-} -- | Obtain 'FoldWithIndex' by lifting 'ifoldr' like function. ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b ifoldring :: forall i (p :: * -> * -> *) (f :: * -> *) a s t b. (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b ifoldring (i -> a -> f a -> f a) -> f a -> s -> f a ifr p a (f b) f = forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom forall b c a. (b -> c) -> (a -> b) -> a -> c . (i -> a -> f a -> f a) -> f a -> s -> f a ifr (\i i a a f a fa -> forall i (p :: * -> * -> *) a b. Indexable i p => p a b -> i -> a -> b indexed p a (f b) f i i a a forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b *> f a fa) forall (f :: * -> *) a. (Contravariant f, Applicative f) => f a noEffect {-# INLINE ifoldring #-} -- | Obtain a 'Fold' from any 'Foldable' indexed by ordinal position. -- -- >>> Just 3^..folded -- [3] -- -- >>> Nothing^..folded -- [] -- -- >>> [(1,2),(3,4)]^..folded.both -- [1,2,3,4] folded :: Foldable f => IndexedFold Int (f a) a folded :: forall (f :: * -> *) a. Foldable f => IndexedFold Int (f a) a folded = forall (p :: * -> * -> *) (q :: * -> * -> *) a b r. Conjoined p => ((p ~ (->)) => q (a -> b) r) -> q (p a b) r -> q (p a b) r conjoined (forall (f :: * -> *) a s t b. (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b foldring forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr) (forall i (p :: * -> * -> *) (f :: * -> *) a s t b. (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b ifoldring forall (f :: * -> *) a b. Foldable f => (Int -> a -> b -> b) -> b -> f a -> b ifoldr) {-# INLINE folded #-} ifoldr :: Foldable f => (Int -> a -> b -> b) -> b -> f a -> b ifoldr :: forall (f :: * -> *) a b. Foldable f => (Int -> a -> b -> b) -> b -> f a -> b ifoldr Int -> a -> b -> b f b z f a xs = forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr (\ a x Int -> b g Int i -> Int i seq :: forall a b. a -> b -> b `seq` Int -> a -> b -> b f Int i a x (Int -> b g (Int iforall a. Num a => a -> a -> a +Int 1))) (forall a b. a -> b -> a const b z) f a xs Int 0 {-# INLINE ifoldr #-} -- | Obtain a 'Fold' from any 'Foldable' indexed by ordinal position. folded64 :: Foldable f => IndexedFold Int64 (f a) a folded64 :: forall (f :: * -> *) a. Foldable f => IndexedFold Int64 (f a) a folded64 = forall (p :: * -> * -> *) (q :: * -> * -> *) a b r. Conjoined p => ((p ~ (->)) => q (a -> b) r) -> q (p a b) r -> q (p a b) r conjoined (forall (f :: * -> *) a s t b. (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b foldring forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr) (forall i (p :: * -> * -> *) (f :: * -> *) a s t b. (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b ifoldring forall (f :: * -> *) a b. Foldable f => (Int64 -> a -> b -> b) -> b -> f a -> b ifoldr64) {-# INLINE folded64 #-} ifoldr64 :: Foldable f => (Int64 -> a -> b -> b) -> b -> f a -> b ifoldr64 :: forall (f :: * -> *) a b. Foldable f => (Int64 -> a -> b -> b) -> b -> f a -> b ifoldr64 Int64 -> a -> b -> b f b z f a xs = forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr (\ a x Int64 -> b g Int64 i -> Int64 i seq :: forall a b. a -> b -> b `seq` Int64 -> a -> b -> b f Int64 i a x (Int64 -> b g (Int64 iforall a. Num a => a -> a -> a +Int64 1))) (forall a b. a -> b -> a const b z) f a xs Int64 0 {-# INLINE ifoldr64 #-} -- | Form a 'Fold1' by repeating the input forever. -- -- @ -- 'repeat' ≡ 'toListOf' 'repeated' -- @ -- -- >>> timingOut $ 5^..taking 20 repeated -- [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] -- -- @ -- 'repeated' :: 'Fold1' a a -- @ repeated :: Apply f => LensLike' f a a repeated :: forall (f :: * -> *) a. Apply f => LensLike' f a a repeated a -> f a f a a = forall {b}. f b as where as :: f b as = a -> f a f a a forall (f :: * -> *) a b. Apply f => f a -> f b -> f b .> f b as {-# INLINE repeated #-} -- | A 'Fold' that replicates its input @n@ times. -- -- @ -- 'replicate' n ≡ 'toListOf' ('replicated' n) -- @ -- -- >>> 5^..replicated 20 -- [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] replicated :: Int -> Fold a a replicated :: forall a. Int -> Fold a a replicated Int n0 a -> f a f a a = forall {t} {a}. (Eq t, Num t) => t -> f a go Int n0 where m :: f a m = a -> f a f a a go :: t -> f a go t 0 = forall (f :: * -> *) a. (Contravariant f, Applicative f) => f a noEffect go t n = f a m forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b *> t -> f a go (t n forall a. Num a => a -> a -> a - t 1) {-# INLINE replicated #-} -- | Transform a non-empty 'Fold' into a 'Fold1' that loops over its elements over and over. -- -- >>> timingOut $ [1,2,3]^..taking 7 (cycled traverse) -- [1,2,3,1,2,3,1] -- -- @ -- 'cycled' :: 'Fold1' s a -> 'Fold1' s a -- @ cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b cycled :: forall (f :: * -> *) s t a b. Apply f => LensLike f s t a b -> LensLike f s t a b cycled LensLike f s t a b l a -> f b f s a = forall {b}. f b as where as :: f b as = LensLike f s t a b l a -> f b f s a forall (f :: * -> *) a b. Apply f => f a -> f b -> f b .> f b as {-# INLINE cycled #-} -- | Build a 'Fold' that unfolds its values from a seed. -- -- @ -- 'Prelude.unfoldr' ≡ 'toListOf' '.' 'unfolded' -- @ -- -- >>> 10^..unfolded (\b -> if b == 0 then Nothing else Just (b, b-1)) -- [10,9,8,7,6,5,4,3,2,1] unfolded :: (b -> Maybe (a, b)) -> Fold b a unfolded :: forall b a. (b -> Maybe (a, b)) -> Fold b a unfolded b -> Maybe (a, b) f a -> f a g = forall {b}. b -> f b go where go :: b -> f b go b b = case b -> Maybe (a, b) f b b of Just (a a, b b') -> a -> f a g a a forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b *> b -> f b go b b' Maybe (a, b) Nothing -> forall (f :: * -> *) a. (Contravariant f, Applicative f) => f a noEffect {-# INLINE unfolded #-} -- | @x '^.' 'iterated' f@ returns an infinite 'Fold1' of repeated applications of @f@ to @x@. -- -- @ -- 'toListOf' ('iterated' f) a ≡ 'iterate' f a -- @ -- -- @ -- 'iterated' :: (a -> a) -> 'Fold1' a a -- @ iterated :: Apply f => (a -> a) -> LensLike' f a a iterated :: forall (f :: * -> *) a. Apply f => (a -> a) -> LensLike' f a a iterated a -> a f a -> f a g = forall {b}. a -> f b go where go :: a -> f b go a a = a -> f a g a a forall (f :: * -> *) a b. Apply f => f a -> f b -> f b .> a -> f b go (a -> a f a a) {-# INLINE iterated #-} -- | Obtain a 'Fold' that can be composed with to filter another 'Lens', 'Iso', 'Getter', 'Fold' (or 'Traversal'). -- -- Note: This is /not/ a legal 'Traversal', unless you are very careful not to invalidate the predicate on the target. -- -- Note: This is also /not/ a legal 'Prism', unless you are very careful not to inject a value that fails the predicate. -- -- As a counter example, consider that given @evens = 'filtered' 'even'@ the second 'Traversal' law is violated: -- -- @ -- 'Control.Lens.Setter.over' evens 'succ' '.' 'Control.Lens.Setter.over' evens 'succ' '/=' 'Control.Lens.Setter.over' evens ('succ' '.' 'succ') -- @ -- -- So, in order for this to qualify as a legal 'Traversal' you can only use it for actions that preserve the result of the predicate! -- -- >>> [1..10]^..folded.filtered even -- [2,4,6,8,10] -- -- This will preserve an index if it is present. filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a filtered :: forall (p :: * -> * -> *) (f :: * -> *) a. (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a filtered a -> Bool p = forall (p :: * -> * -> *) a b c d. Profunctor p => (a -> b) -> (c -> d) -> p b c -> p a d dimap (\a x -> if a -> Bool p a x then forall a b. b -> Either a b Right a x else forall a b. a -> Either a b Left a x) (forall a c b. (a -> c) -> (b -> c) -> Either a b -> c either forall (f :: * -> *) a. Applicative f => a -> f a pure forall a. a -> a id) forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (p :: * -> * -> *) a b c. Choice p => p a b -> p (Either c a) (Either c b) right' {-# INLINE filtered #-} -- | Obtain a potentially empty 'IndexedTraversal' by taking the first element from another, -- potentially empty `Fold` and using it as an index. -- -- The resulting optic can be composed with to filter another 'Lens', 'Iso', 'Getter', 'Fold' (or 'Traversal'). -- -- >>> [(Just 2, 3), (Nothing, 4)] & mapped . filteredBy (_1 . _Just) <. _2 %@~ (*) :: [(Maybe Int, Int)] -- [(Just 2,6),(Nothing,4)] -- -- @ -- 'filteredBy' :: 'Fold' a i -> 'IndexedTraversal'' i a a -- @ -- -- Note: As with 'filtered', this is /not/ a legal 'IndexedTraversal', unless you are very careful not to invalidate the predicate on the target! filteredBy :: (Indexable i p, Applicative f) => Getting (First i) a i -> p a (f a) -> a -> f a filteredBy :: forall i (p :: * -> * -> *) (f :: * -> *) a. (Indexable i p, Applicative f) => Getting (First i) a i -> p a (f a) -> a -> f a filteredBy Getting (First i) a i p p a (f a) f a val = case a val forall s a. s -> Getting (First a) s a -> Maybe a ^? Getting (First i) a i p of Maybe i Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a pure a val Just i witness -> forall i (p :: * -> * -> *) a b. Indexable i p => p a b -> i -> a -> b indexed p a (f a) f i witness a val -- | Obtain a 'Fold' by taking elements from another 'Fold', 'Lens', 'Iso', 'Getter' or 'Traversal' while a predicate holds. -- -- @ -- 'takeWhile' p ≡ 'toListOf' ('takingWhile' p 'folded') -- @ -- -- >>> timingOut $ toListOf (takingWhile (<=3) folded) [1..] -- [1,2,3] -- -- @ -- 'takingWhile' :: (a -> 'Bool') -> 'Fold' s a -> 'Fold' s a -- 'takingWhile' :: (a -> 'Bool') -> 'Getter' s a -> 'Fold' s a -- 'takingWhile' :: (a -> 'Bool') -> 'Traversal'' s a -> 'Fold' s a -- * See note below -- 'takingWhile' :: (a -> 'Bool') -> 'Lens'' s a -> 'Fold' s a -- * See note below -- 'takingWhile' :: (a -> 'Bool') -> 'Prism'' s a -> 'Fold' s a -- * See note below -- 'takingWhile' :: (a -> 'Bool') -> 'Iso'' s a -> 'Fold' s a -- * See note below -- 'takingWhile' :: (a -> 'Bool') -> 'IndexedTraversal'' i s a -> 'IndexedFold' i s a -- * See note below -- 'takingWhile' :: (a -> 'Bool') -> 'IndexedLens'' i s a -> 'IndexedFold' i s a -- * See note below -- 'takingWhile' :: (a -> 'Bool') -> 'IndexedFold' i s a -> 'IndexedFold' i s a -- 'takingWhile' :: (a -> 'Bool') -> 'IndexedGetter' i s a -> 'IndexedFold' i s a -- @ -- -- /Note:/ When applied to a 'Traversal', 'takingWhile' yields something that can be used as if it were a 'Traversal', but -- which is not a 'Traversal' per the laws, unless you are careful to ensure that you do not invalidate the predicate when -- writing back through it. takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a takingWhile :: forall (p :: * -> * -> *) (f :: * -> *) a s t. (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a takingWhile a -> Bool p Over p (TakingWhile p f a a) s t a a l p a (f a) pafb = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap forall i t a. Magma i t a a -> t runMagma forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (t :: * -> *) (f :: * -> *) a b. (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) traverse (forall (p :: * -> * -> *) (f :: * -> *) a b. Cosieve p f => p a b -> f a -> b cosieve p a (f a) pafb) forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (p :: * -> * -> *) (f :: * -> *) a b t. TakingWhile p f a b t -> Magma () t b (Corep p a) runTakingWhile forall b c a. (b -> c) -> (a -> b) -> a -> c . Over p (TakingWhile p f a a) s t a a l forall {g :: * -> *}. p a (TakingWhile p g a a a) flag where flag :: p a (TakingWhile p g a a a) flag = forall (p :: * -> * -> *) d c. Corepresentable p => (Corep p d -> c) -> p d c cotabulate forall a b. (a -> b) -> a -> b $ \Corep p a wa -> let a :: a a = forall (w :: * -> *) a. Comonad w => w a -> a extract Corep p a wa; r :: Bool r = a -> Bool p a a in forall (p :: * -> * -> *) (g :: * -> *) a b t. Bool -> t -> (Bool -> Magma () t b (Corep p a)) -> TakingWhile p g a b t TakingWhile Bool r a a forall a b. (a -> b) -> a -> b $ \Bool pr -> if Bool pr Bool -> Bool -> Bool && Bool r then forall i a b. i -> a -> Magma i b b a Magma () Corep p a wa else forall x i b a. x -> Magma i x b a MagmaPure a a {-# INLINE takingWhile #-} -- | Obtain a 'Fold' by dropping elements from another 'Fold', 'Lens', 'Iso', 'Getter' or 'Traversal' while a predicate holds. -- -- @ -- 'dropWhile' p ≡ 'toListOf' ('droppingWhile' p 'folded') -- @ -- -- >>> toListOf (droppingWhile (<=3) folded) [1..6] -- [4,5,6] -- -- >>> toListOf (droppingWhile (<=3) folded) [1,6,1] -- [6,1] -- -- @ -- 'droppingWhile' :: (a -> 'Bool') -> 'Fold' s a -> 'Fold' s a -- 'droppingWhile' :: (a -> 'Bool') -> 'Getter' s a -> 'Fold' s a -- 'droppingWhile' :: (a -> 'Bool') -> 'Traversal'' s a -> 'Fold' s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'Lens'' s a -> 'Fold' s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'Prism'' s a -> 'Fold' s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'Iso'' s a -> 'Fold' s a -- see notes -- @ -- -- @ -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexPreservingTraversal'' s a -> 'IndexPreservingFold' s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexPreservingLens'' s a -> 'IndexPreservingFold' s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexPreservingGetter' s a -> 'IndexPreservingFold' s a -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexPreservingFold' s a -> 'IndexPreservingFold' s a -- @ -- -- @ -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexedTraversal'' i s a -> 'IndexedFold' i s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexedLens'' i s a -> 'IndexedFold' i s a -- see notes -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexedGetter' i s a -> 'IndexedFold' i s a -- 'droppingWhile' :: (a -> 'Bool') -> 'IndexedFold' i s a -> 'IndexedFold' i s a -- @ -- -- Note: Many uses of this combinator will yield something that meets the types, but not the laws of a valid -- 'Traversal' or 'IndexedTraversal'. The 'Traversal' and 'IndexedTraversal' laws are only satisfied if the -- new values you assign to the first target also does not pass the predicate! Otherwise subsequent traversals -- will visit fewer elements and 'Traversal' fusion is not sound. -- -- So for any traversal @t@ and predicate @p@, @`droppingWhile` p t@ may not be lawful, but -- @(`Control.Lens.Traversal.dropping` 1 . `droppingWhile` p) t@ is. For example: -- -- >>> let l :: Traversal' [Int] Int; l = droppingWhile (<= 1) traverse -- >>> let l' :: Traversal' [Int] Int; l' = dropping 1 l -- -- @l@ is not a lawful setter because @`Control.Lens.Setter.over` l f . -- `Control.Lens.Setter.over` l g ≢ `Control.Lens.Setter.over` l (f . g)@: -- -- >>> [1,2,3] & l .~ 0 & l .~ 4 -- [1,0,0] -- >>> [1,2,3] & l .~ 4 -- [1,4,4] -- -- @l'@ on the other hand behaves lawfully: -- -- >>> [1,2,3] & l' .~ 0 & l' .~ 4 -- [1,2,4] -- >>> [1,2,3] & l' .~ 4 -- [1,2,4] droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a droppingWhile :: forall (p :: * -> * -> *) (q :: * -> * -> *) (f :: * -> *) a s t. (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a droppingWhile a -> Bool p Optical p q (Compose (State Bool) f) s t a a l p a (f a) f = (forall a b c. (a -> b -> c) -> b -> a -> c flip forall s a. State s a -> s -> a evalState Bool True forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible b a) => p b c -> q a b -> p a c .# forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2). Compose f g a -> f (g a) getCompose) forall (p :: * -> * -> *) b c a. Profunctor p => (b -> c) -> p a b -> p a c `rmap` Optical p q (Compose (State Bool) f) s t a a l p a (Compose (State Bool) f a) g where g :: p a (Compose (State Bool) f a) g = forall (p :: * -> * -> *) d c. Corepresentable p => (Corep p d -> c) -> p d c cotabulate forall a b. (a -> b) -> a -> b $ \Corep p a wa -> forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1). f (g a) -> Compose f g a Compose forall a b. (a -> b) -> a -> b $ forall s (m :: * -> *) a. MonadState s m => (s -> (a, s)) -> m a state forall a b. (a -> b) -> a -> b $ \Bool b -> let a :: a a = forall (w :: * -> *) a. Comonad w => w a -> a extract Corep p a wa b' :: Bool b' = Bool b Bool -> Bool -> Bool && a -> Bool p a a in (if Bool b' then forall (f :: * -> *) a. Applicative f => a -> f a pure a a else forall (p :: * -> * -> *) (f :: * -> *) a b. Cosieve p f => p a b -> f a -> b cosieve p a (f a) f Corep p a wa, Bool b') {-# INLINE droppingWhile #-} -- | A 'Fold' over the individual 'words' of a 'String'. -- -- @ -- 'worded' :: 'Fold' 'String' 'String' -- 'worded' :: 'Traversal'' 'String' 'String' -- @ -- -- @ -- 'worded' :: 'IndexedFold' 'Int' 'String' 'String' -- 'worded' :: 'IndexedTraversal'' 'Int' 'String' 'String' -- @ -- -- Note: This function type-checks as a 'Traversal' but it doesn't satisfy the laws. It's only valid to use it -- when you don't insert any whitespace characters while traversing, and if your original 'String' contains only -- isolated space characters (and no other characters that count as space, such as non-breaking spaces). worded :: Applicative f => IndexedLensLike' Int f String String worded :: forall (f :: * -> *). Applicative f => IndexedLensLike' Int f String String worded p String (f String) f = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap [String] -> String unwords forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (p :: * -> * -> *) (q :: * -> * -> *) a b r. Conjoined p => ((p ~ (->)) => q (a -> b) r) -> q (p a b) r -> q (p a b) r conjoined forall (t :: * -> *) (f :: * -> *) a b. (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) traverse (forall (p :: * -> * -> *) a (f :: * -> *) b s t. Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t indexing forall (t :: * -> *) (f :: * -> *) a b. (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) traverse) p String (f String) f forall b c a. (b -> c) -> (a -> b) -> a -> c . String -> [String] words {-# INLINE worded #-} -- | A 'Fold' over the individual 'lines' of a 'String'. -- -- @ -- 'lined' :: 'Fold' 'String' 'String' -- 'lined' :: 'Traversal'' 'String' 'String' -- @ -- -- @ -- 'lined' :: 'IndexedFold' 'Int' 'String' 'String' -- 'lined' :: 'IndexedTraversal'' 'Int' 'String' 'String' -- @ -- -- Note: This function type-checks as a 'Traversal' but it doesn't satisfy the laws. It's only valid to use it -- when you don't insert any newline characters while traversing, and if your original 'String' contains only -- isolated newline characters. lined :: Applicative f => IndexedLensLike' Int f String String lined :: forall (f :: * -> *). Applicative f => IndexedLensLike' Int f String String lined p String (f String) f = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap (forall a. [a] -> [[a]] -> [a] intercalate String "\n") forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (p :: * -> * -> *) (q :: * -> * -> *) a b r. Conjoined p => ((p ~ (->)) => q (a -> b) r) -> q (p a b) r -> q (p a b) r conjoined forall (t :: * -> *) (f :: * -> *) a b. (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) traverse (forall (p :: * -> * -> *) a (f :: * -> *) b s t. Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t indexing forall (t :: * -> *) (f :: * -> *) a b. (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) traverse) p String (f String) f forall b c a. (b -> c) -> (a -> b) -> a -> c . String -> [String] lines {-# INLINE lined #-} -------------------------- -- Fold/Getter combinators -------------------------- -- | Map each part of a structure viewed through a 'Lens', 'Getter', -- 'Fold' or 'Traversal' to a monoid and combine the results. -- -- >>> foldMapOf (folded . both . _Just) Sum [(Just 21, Just 21)] -- Sum {getSum = 42} -- -- @ -- 'Data.Foldable.foldMap' = 'foldMapOf' 'folded' -- @ -- -- @ -- 'foldMapOf' ≡ 'views' -- 'ifoldMapOf' l = 'foldMapOf' l '.' 'Indexed' -- @ -- -- @ -- 'foldMapOf' :: 'Getter' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Monoid' r => 'Fold' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Semigroup' r => 'Fold1' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Lens'' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Iso'' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Monoid' r => 'Traversal'' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Semigroup' r => 'Traversal1'' s a -> (a -> r) -> s -> r -- 'foldMapOf' :: 'Monoid' r => 'Prism'' s a -> (a -> r) -> s -> r -- @ -- -- @ -- 'foldMapOf' :: 'Getting' r s a -> (a -> r) -> s -> r -- @ foldMapOf :: Getting r s a -> (a -> r) -> s -> r foldMapOf :: forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf = coerce :: forall a b. Coercible a b => a -> b coerce {-# INLINE foldMapOf #-} -- | Combine the elements of a structure viewed through a 'Lens', 'Getter', -- 'Fold' or 'Traversal' using a monoid. -- -- >>> foldOf (folded.folded) [[Sum 1,Sum 4],[Sum 8, Sum 8],[Sum 21]] -- Sum {getSum = 42} -- -- @ -- 'Data.Foldable.fold' = 'foldOf' 'folded' -- @ -- -- @ -- 'foldOf' ≡ 'view' -- @ -- -- @ -- 'foldOf' :: 'Getter' s m -> s -> m -- 'foldOf' :: 'Monoid' m => 'Fold' s m -> s -> m -- 'foldOf' :: 'Lens'' s m -> s -> m -- 'foldOf' :: 'Iso'' s m -> s -> m -- 'foldOf' :: 'Monoid' m => 'Traversal'' s m -> s -> m -- 'foldOf' :: 'Monoid' m => 'Prism'' s m -> s -> m -- @ foldOf :: Getting a s a -> s -> a foldOf :: forall a s. Getting a s a -> s -> a foldOf Getting a s a l = forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. Getting a s a l forall {k} a (b :: k). a -> Const a b Const {-# INLINE foldOf #-} -- | Right-associative fold of parts of a structure that are viewed through a 'Lens', 'Getter', 'Fold' or 'Traversal'. -- -- @ -- 'Data.Foldable.foldr' ≡ 'foldrOf' 'folded' -- @ -- -- @ -- 'foldrOf' :: 'Getter' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf' :: 'Fold' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf' :: 'Lens'' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf' :: 'Iso'' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf' :: 'Traversal'' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf' :: 'Prism'' s a -> (a -> r -> r) -> r -> s -> r -- @ -- -- @ -- 'ifoldrOf' l ≡ 'foldrOf' l '.' 'Indexed' -- @ -- -- @ -- 'foldrOf' :: 'Getting' ('Endo' r) s a -> (a -> r -> r) -> r -> s -> r -- @ foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf :: forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo r) s a l a -> r -> r f r z = forall a b c. (a -> b -> c) -> b -> a -> c flip forall a. Endo a -> a -> a appEndo r z forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Endo r) s a l (forall a. (a -> a) -> Endo a Endo forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> r -> r f) {-# INLINE foldrOf #-} -- | Left-associative fold of the parts of a structure that are viewed through a 'Lens', 'Getter', 'Fold' or 'Traversal'. -- -- @ -- 'Data.Foldable.foldl' ≡ 'foldlOf' 'folded' -- @ -- -- @ -- 'foldlOf' :: 'Getter' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf' :: 'Fold' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf' :: 'Lens'' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf' :: 'Iso'' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf' :: 'Traversal'' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf' :: 'Prism'' s a -> (r -> a -> r) -> r -> s -> r -- @ foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf :: forall r s a. Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf Getting (Dual (Endo r)) s a l r -> a -> r f r z = (forall a b c. (a -> b -> c) -> b -> a -> c flip forall a. Endo a -> a -> a appEndo r z forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible b a) => p b c -> q a b -> p a c .# forall a. Dual a -> a getDual) forall (p :: * -> * -> *) b c a. Profunctor p => (b -> c) -> p a b -> p a c `rmap` forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Dual (Endo r)) s a l (forall a. a -> Dual a Dual forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. (a -> a) -> Endo a Endo forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a b c. (a -> b -> c) -> b -> a -> c flip r -> a -> r f) {-# INLINE foldlOf #-} -- | Extract a list of the targets of a 'Fold'. See also ('^..'). -- -- @ -- 'Data.Foldable.toList' ≡ 'toListOf' 'folded' -- ('^..') ≡ 'flip' 'toListOf' -- @ -- >>> toListOf both ("hello","world") -- ["hello","world"] -- -- @ -- 'toListOf' :: 'Getter' s a -> s -> [a] -- 'toListOf' :: 'Fold' s a -> s -> [a] -- 'toListOf' :: 'Lens'' s a -> s -> [a] -- 'toListOf' :: 'Iso'' s a -> s -> [a] -- 'toListOf' :: 'Traversal'' s a -> s -> [a] -- 'toListOf' :: 'Prism'' s a -> s -> [a] -- @ toListOf :: Getting (Endo [a]) s a -> s -> [a] toListOf :: forall a s. Getting (Endo [a]) s a -> s -> [a] toListOf Getting (Endo [a]) s a l = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo [a]) s a l (:) [] {-# INLINE toListOf #-} -- | Extract a 'NonEmpty' of the targets of 'Fold1'. -- -- >>> toNonEmptyOf both1 ("hello", "world") -- "hello" :| ["world"] -- -- @ -- 'toNonEmptyOf' :: 'Getter' s a -> s -> NonEmpty a -- 'toNonEmptyOf' :: 'Fold1' s a -> s -> NonEmpty a -- 'toNonEmptyOf' :: 'Lens'' s a -> s -> NonEmpty a -- 'toNonEmptyOf' :: 'Iso'' s a -> s -> NonEmpty a -- 'toNonEmptyOf' :: 'Traversal1'' s a -> s -> NonEmpty a -- 'toNonEmptyOf' :: 'Prism'' s a -> s -> NonEmpty a -- @ toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a toNonEmptyOf :: forall a s. Getting (NonEmptyDList a) s a -> s -> NonEmpty a toNonEmptyOf Getting (NonEmptyDList a) s a l = forall a b c. (a -> b -> c) -> b -> a -> c flip forall a. NonEmptyDList a -> [a] -> NonEmpty a getNonEmptyDList [] forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (NonEmptyDList a) s a l (forall a. ([a] -> NonEmpty a) -> NonEmptyDList a NonEmptyDList forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. a -> [a] -> NonEmpty a (:|)) -- | A convenient infix (flipped) version of 'toListOf'. -- -- >>> [[1,2],[3]]^..id -- [[[1,2],[3]]] -- >>> [[1,2],[3]]^..traverse -- [[1,2],[3]] -- >>> [[1,2],[3]]^..traverse.traverse -- [1,2,3] -- -- >>> (1,2)^..both -- [1,2] -- -- @ -- 'Data.Foldable.toList' xs ≡ xs '^..' 'folded' -- ('^..') ≡ 'flip' 'toListOf' -- @ -- -- @ -- ('^..') :: s -> 'Getter' s a -> [a] -- ('^..') :: s -> 'Fold' s a -> [a] -- ('^..') :: s -> 'Lens'' s a -> [a] -- ('^..') :: s -> 'Iso'' s a -> [a] -- ('^..') :: s -> 'Traversal'' s a -> [a] -- ('^..') :: s -> 'Prism'' s a -> [a] -- @ (^..) :: s -> Getting (Endo [a]) s a -> [a] s s ^.. :: forall s a. s -> Getting (Endo [a]) s a -> [a] ^.. Getting (Endo [a]) s a l = forall a s. Getting (Endo [a]) s a -> s -> [a] toListOf Getting (Endo [a]) s a l s s {-# INLINE (^..) #-} -- | Returns 'True' if every target of a 'Fold' is 'True'. -- -- >>> andOf both (True,False) -- False -- >>> andOf both (True,True) -- True -- -- @ -- 'Data.Foldable.and' ≡ 'andOf' 'folded' -- @ -- -- @ -- 'andOf' :: 'Getter' s 'Bool' -> s -> 'Bool' -- 'andOf' :: 'Fold' s 'Bool' -> s -> 'Bool' -- 'andOf' :: 'Lens'' s 'Bool' -> s -> 'Bool' -- 'andOf' :: 'Iso'' s 'Bool' -> s -> 'Bool' -- 'andOf' :: 'Traversal'' s 'Bool' -> s -> 'Bool' -- 'andOf' :: 'Prism'' s 'Bool' -> s -> 'Bool' -- @ andOf :: Getting All s Bool -> s -> Bool andOf :: forall s. Getting All s Bool -> s -> Bool andOf Getting All s Bool l = All -> Bool getAll forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting All s Bool l Bool -> All All {-# INLINE andOf #-} -- | Returns 'True' if any target of a 'Fold' is 'True'. -- -- >>> orOf both (True,False) -- True -- >>> orOf both (False,False) -- False -- -- @ -- 'Data.Foldable.or' ≡ 'orOf' 'folded' -- @ -- -- @ -- 'orOf' :: 'Getter' s 'Bool' -> s -> 'Bool' -- 'orOf' :: 'Fold' s 'Bool' -> s -> 'Bool' -- 'orOf' :: 'Lens'' s 'Bool' -> s -> 'Bool' -- 'orOf' :: 'Iso'' s 'Bool' -> s -> 'Bool' -- 'orOf' :: 'Traversal'' s 'Bool' -> s -> 'Bool' -- 'orOf' :: 'Prism'' s 'Bool' -> s -> 'Bool' -- @ orOf :: Getting Any s Bool -> s -> Bool orOf :: forall s. Getting Any s Bool -> s -> Bool orOf Getting Any s Bool l = Any -> Bool getAny forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting Any s Bool l Bool -> Any Any {-# INLINE orOf #-} -- | Returns 'True' if any target of a 'Fold' satisfies a predicate. -- -- >>> anyOf both (=='x') ('x','y') -- True -- >>> import Data.Data.Lens -- >>> anyOf biplate (== "world") (((),2::Int),"hello",("world",11::Int)) -- True -- -- @ -- 'Data.Foldable.any' ≡ 'anyOf' 'folded' -- @ -- -- @ -- 'ianyOf' l ≡ 'anyOf' l '.' 'Indexed' -- @ -- -- @ -- 'anyOf' :: 'Getter' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'anyOf' :: 'Fold' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'anyOf' :: 'Lens'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'anyOf' :: 'Iso'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'anyOf' :: 'Traversal'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'anyOf' :: 'Prism'' s a -> (a -> 'Bool') -> s -> 'Bool' -- @ anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool anyOf :: forall s a. Getting Any s a -> (a -> Bool) -> s -> Bool anyOf Getting Any s a l a -> Bool f = Any -> Bool getAny forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting Any s a l (Bool -> Any Any forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> Bool f) {-# INLINE anyOf #-} -- | Returns 'True' if every target of a 'Fold' satisfies a predicate. -- -- >>> allOf both (>=3) (4,5) -- True -- >>> allOf folded (>=2) [1..10] -- False -- -- @ -- 'Data.Foldable.all' ≡ 'allOf' 'folded' -- @ -- -- @ -- 'iallOf' l = 'allOf' l '.' 'Indexed' -- @ -- -- @ -- 'allOf' :: 'Getter' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'allOf' :: 'Fold' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'allOf' :: 'Lens'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'allOf' :: 'Iso'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'allOf' :: 'Traversal'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'allOf' :: 'Prism'' s a -> (a -> 'Bool') -> s -> 'Bool' -- @ allOf :: Getting All s a -> (a -> Bool) -> s -> Bool allOf :: forall s a. Getting All s a -> (a -> Bool) -> s -> Bool allOf Getting All s a l a -> Bool f = All -> Bool getAll forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting All s a l (Bool -> All All forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> Bool f) {-# INLINE allOf #-} -- | Returns 'True' only if no targets of a 'Fold' satisfy a predicate. -- -- >>> noneOf each (is _Nothing) (Just 3, Just 4, Just 5) -- True -- >>> noneOf (folded.folded) (<10) [[13,99,20],[3,71,42]] -- False -- -- @ -- 'inoneOf' l = 'noneOf' l '.' 'Indexed' -- @ -- -- @ -- 'noneOf' :: 'Getter' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'noneOf' :: 'Fold' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'noneOf' :: 'Lens'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'noneOf' :: 'Iso'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'noneOf' :: 'Traversal'' s a -> (a -> 'Bool') -> s -> 'Bool' -- 'noneOf' :: 'Prism'' s a -> (a -> 'Bool') -> s -> 'Bool' -- @ noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool noneOf :: forall s a. Getting Any s a -> (a -> Bool) -> s -> Bool noneOf Getting Any s a l a -> Bool f = Bool -> Bool not forall b c a. (b -> c) -> (a -> b) -> a -> c . forall s a. Getting Any s a -> (a -> Bool) -> s -> Bool anyOf Getting Any s a l a -> Bool f {-# INLINE noneOf #-} -- | Calculate the 'Product' of every number targeted by a 'Fold'. -- -- >>> productOf both (4,5) -- 20 -- >>> productOf folded [1,2,3,4,5] -- 120 -- -- @ -- 'Data.Foldable.product' ≡ 'productOf' 'folded' -- @ -- -- This operation may be more strict than you would expect. If you -- want a lazier version use @'ala' 'Product' '.' 'foldMapOf'@ -- -- @ -- 'productOf' :: 'Num' a => 'Getter' s a -> s -> a -- 'productOf' :: 'Num' a => 'Fold' s a -> s -> a -- 'productOf' :: 'Num' a => 'Lens'' s a -> s -> a -- 'productOf' :: 'Num' a => 'Iso'' s a -> s -> a -- 'productOf' :: 'Num' a => 'Traversal'' s a -> s -> a -- 'productOf' :: 'Num' a => 'Prism'' s a -> s -> a -- @ productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a productOf :: forall a s. Num a => Getting (Endo (Endo a)) s a -> s -> a productOf Getting (Endo (Endo a)) s a l = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo a)) s a l forall a. Num a => a -> a -> a (*) a 1 {-# INLINE productOf #-} -- | Calculate the 'Sum' of every number targeted by a 'Fold'. -- -- >>> sumOf both (5,6) -- 11 -- >>> sumOf folded [1,2,3,4] -- 10 -- >>> sumOf (folded.both) [(1,2),(3,4)] -- 10 -- >>> import Data.Data.Lens -- >>> sumOf biplate [(1::Int,[]),(2,[(3::Int,4::Int)])] :: Int -- 10 -- -- @ -- 'Data.Foldable.sum' ≡ 'sumOf' 'folded' -- @ -- -- This operation may be more strict than you would expect. If you -- want a lazier version use @'ala' 'Sum' '.' 'foldMapOf'@ -- -- @ -- 'sumOf' '_1' :: 'Num' a => (a, b) -> a -- 'sumOf' ('folded' '.' 'Control.Lens.Tuple._1') :: ('Foldable' f, 'Num' a) => f (a, b) -> a -- @ -- -- @ -- 'sumOf' :: 'Num' a => 'Getter' s a -> s -> a -- 'sumOf' :: 'Num' a => 'Fold' s a -> s -> a -- 'sumOf' :: 'Num' a => 'Lens'' s a -> s -> a -- 'sumOf' :: 'Num' a => 'Iso'' s a -> s -> a -- 'sumOf' :: 'Num' a => 'Traversal'' s a -> s -> a -- 'sumOf' :: 'Num' a => 'Prism'' s a -> s -> a -- @ sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a sumOf :: forall a s. Num a => Getting (Endo (Endo a)) s a -> s -> a sumOf Getting (Endo (Endo a)) s a l = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo a)) s a l forall a. Num a => a -> a -> a (+) a 0 {-# INLINE sumOf #-} -- | Traverse over all of the targets of a 'Fold' (or 'Getter'), computing an 'Applicative' (or 'Functor')-based answer, -- but unlike 'Control.Lens.Traversal.traverseOf' do not construct a new structure. 'traverseOf_' generalizes -- 'Data.Foldable.traverse_' to work over any 'Fold'. -- -- When passed a 'Getter', 'traverseOf_' can work over any 'Functor', but when passed a 'Fold', 'traverseOf_' requires -- an 'Applicative'. -- -- >>> traverseOf_ both putStrLn ("hello","world") -- hello -- world -- -- @ -- 'Data.Foldable.traverse_' ≡ 'traverseOf_' 'folded' -- @ -- -- @ -- 'traverseOf_' '_2' :: 'Functor' f => (c -> f r) -> (d, c) -> f () -- 'traverseOf_' 'Control.Lens.Prism._Left' :: 'Applicative' f => (a -> f b) -> 'Either' a c -> f () -- @ -- -- @ -- 'itraverseOf_' l ≡ 'traverseOf_' l '.' 'Indexed' -- @ -- -- The rather specific signature of 'traverseOf_' allows it to be used as if the signature was any of: -- -- @ -- 'traverseOf_' :: 'Functor' f => 'Getter' s a -> (a -> f r) -> s -> f () -- 'traverseOf_' :: 'Applicative' f => 'Fold' s a -> (a -> f r) -> s -> f () -- 'traverseOf_' :: 'Functor' f => 'Lens'' s a -> (a -> f r) -> s -> f () -- 'traverseOf_' :: 'Functor' f => 'Iso'' s a -> (a -> f r) -> s -> f () -- 'traverseOf_' :: 'Applicative' f => 'Traversal'' s a -> (a -> f r) -> s -> f () -- 'traverseOf_' :: 'Applicative' f => 'Prism'' s a -> (a -> f r) -> s -> f () -- @ traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () traverseOf_ :: forall (f :: * -> *) r s a. Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () traverseOf_ Getting (Traversed r f) s a l a -> f r f = forall (f :: * -> *) a. Functor f => f a -> f () void forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (f :: * -> *). Traversed a f -> f a getTraversed forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Traversed r f) s a l (forall a (f :: * -> *). f a -> Traversed a f Traversed forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> f r f) {-# INLINE traverseOf_ #-} -- | Traverse over all of the targets of a 'Fold' (or 'Getter'), computing an 'Applicative' (or 'Functor')-based answer, -- but unlike 'Control.Lens.Traversal.forOf' do not construct a new structure. 'forOf_' generalizes -- 'Data.Foldable.for_' to work over any 'Fold'. -- -- When passed a 'Getter', 'forOf_' can work over any 'Functor', but when passed a 'Fold', 'forOf_' requires -- an 'Applicative'. -- -- @ -- 'for_' ≡ 'forOf_' 'folded' -- @ -- -- >>> forOf_ both ("hello","world") putStrLn -- hello -- world -- -- The rather specific signature of 'forOf_' allows it to be used as if the signature was any of: -- -- @ -- 'iforOf_' l s ≡ 'forOf_' l s '.' 'Indexed' -- @ -- -- @ -- 'forOf_' :: 'Functor' f => 'Getter' s a -> s -> (a -> f r) -> f () -- 'forOf_' :: 'Applicative' f => 'Fold' s a -> s -> (a -> f r) -> f () -- 'forOf_' :: 'Functor' f => 'Lens'' s a -> s -> (a -> f r) -> f () -- 'forOf_' :: 'Functor' f => 'Iso'' s a -> s -> (a -> f r) -> f () -- 'forOf_' :: 'Applicative' f => 'Traversal'' s a -> s -> (a -> f r) -> f () -- 'forOf_' :: 'Applicative' f => 'Prism'' s a -> s -> (a -> f r) -> f () -- @ forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f () forOf_ :: forall (f :: * -> *) r s a. Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f () forOf_ = forall a b c. (a -> b -> c) -> b -> a -> c flip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (f :: * -> *) r s a. Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () traverseOf_ {-# INLINE forOf_ #-} -- | Evaluate each action in observed by a 'Fold' on a structure from left to right, ignoring the results. -- -- @ -- 'sequenceA_' ≡ 'sequenceAOf_' 'folded' -- @ -- -- >>> sequenceAOf_ both (putStrLn "hello",putStrLn "world") -- hello -- world -- -- @ -- 'sequenceAOf_' :: 'Functor' f => 'Getter' s (f a) -> s -> f () -- 'sequenceAOf_' :: 'Applicative' f => 'Fold' s (f a) -> s -> f () -- 'sequenceAOf_' :: 'Functor' f => 'Lens'' s (f a) -> s -> f () -- 'sequenceAOf_' :: 'Functor' f => 'Iso'' s (f a) -> s -> f () -- 'sequenceAOf_' :: 'Applicative' f => 'Traversal'' s (f a) -> s -> f () -- 'sequenceAOf_' :: 'Applicative' f => 'Prism'' s (f a) -> s -> f () -- @ sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f () sequenceAOf_ :: forall (f :: * -> *) a s. Functor f => Getting (Traversed a f) s (f a) -> s -> f () sequenceAOf_ Getting (Traversed a f) s (f a) l = forall (f :: * -> *) a. Functor f => f a -> f () void forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (f :: * -> *). Traversed a f -> f a getTraversed forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Traversed a f) s (f a) l forall a (f :: * -> *). f a -> Traversed a f Traversed {-# INLINE sequenceAOf_ #-} -- | Traverse over all of the targets of a 'Fold1', computing an 'Apply' based answer. -- -- As long as you have 'Applicative' or 'Functor' effect you are better using 'traverseOf_'. -- The 'traverse1Of_' is useful only when you have genuine 'Apply' effect. -- -- >>> traverse1Of_ both1 (\ks -> Map.fromList [ (k, ()) | k <- ks ]) ("abc", "bcd") -- fromList [('b',()),('c',())] -- -- @ -- 'traverse1Of_' :: 'Apply' f => 'Fold1' s a -> (a -> f r) -> s -> f () -- @ -- -- @since 4.16 traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f () traverse1Of_ :: forall (f :: * -> *) r s a. Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f () traverse1Of_ Getting (TraversedF r f) s a l a -> f r f = forall (f :: * -> *) a. Functor f => f a -> f () void forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (f :: * -> *). TraversedF a f -> f a getTraversedF forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (TraversedF r f) s a l (forall a (f :: * -> *). f a -> TraversedF a f TraversedF forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> f r f) {-# INLINE traverse1Of_ #-} -- | See 'forOf_' and 'traverse1Of_'. -- -- >>> for1Of_ both1 ("abc", "bcd") (\ks -> Map.fromList [ (k, ()) | k <- ks ]) -- fromList [('b',()),('c',())] -- -- @ -- 'for1Of_' :: 'Apply' f => 'Fold1' s a -> s -> (a -> f r) -> f () -- @ -- -- @since 4.16 for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f () for1Of_ :: forall (f :: * -> *) r s a. Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f () for1Of_ = forall a b c. (a -> b -> c) -> b -> a -> c flip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (f :: * -> *) r s a. Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f () traverse1Of_ {-# INLINE for1Of_ #-} -- | See 'sequenceAOf_' and 'traverse1Of_'. -- -- @ -- 'sequence1Of_' :: 'Apply' f => 'Fold1' s (f a) -> s -> f () -- @ -- -- @since 4.16 sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f () sequence1Of_ :: forall (f :: * -> *) a s. Functor f => Getting (TraversedF a f) s (f a) -> s -> f () sequence1Of_ Getting (TraversedF a f) s (f a) l = forall (f :: * -> *) a. Functor f => f a -> f () void forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (f :: * -> *). TraversedF a f -> f a getTraversedF forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (TraversedF a f) s (f a) l forall a (f :: * -> *). f a -> TraversedF a f TraversedF {-# INLINE sequence1Of_ #-} -- | Map each target of a 'Fold' on a structure to a monadic action, evaluate these actions from left to right, and ignore the results. -- -- >>> mapMOf_ both putStrLn ("hello","world") -- hello -- world -- -- @ -- 'Data.Foldable.mapM_' ≡ 'mapMOf_' 'folded' -- @ -- -- @ -- 'mapMOf_' :: 'Monad' m => 'Getter' s a -> (a -> m r) -> s -> m () -- 'mapMOf_' :: 'Monad' m => 'Fold' s a -> (a -> m r) -> s -> m () -- 'mapMOf_' :: 'Monad' m => 'Lens'' s a -> (a -> m r) -> s -> m () -- 'mapMOf_' :: 'Monad' m => 'Iso'' s a -> (a -> m r) -> s -> m () -- 'mapMOf_' :: 'Monad' m => 'Traversal'' s a -> (a -> m r) -> s -> m () -- 'mapMOf_' :: 'Monad' m => 'Prism'' s a -> (a -> m r) -> s -> m () -- @ mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m () mapMOf_ :: forall (m :: * -> *) r s a. Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m () mapMOf_ Getting (Sequenced r m) s a l a -> m r f = forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r liftM forall a. a -> () skip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (m :: * -> *). Sequenced a m -> m a getSequenced forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Sequenced r m) s a l (forall a (m :: * -> *). m a -> Sequenced a m Sequenced forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> m r f) {-# INLINE mapMOf_ #-} -- | 'forMOf_' is 'mapMOf_' with two of its arguments flipped. -- -- >>> forMOf_ both ("hello","world") putStrLn -- hello -- world -- -- @ -- 'Data.Foldable.forM_' ≡ 'forMOf_' 'folded' -- @ -- -- @ -- 'forMOf_' :: 'Monad' m => 'Getter' s a -> s -> (a -> m r) -> m () -- 'forMOf_' :: 'Monad' m => 'Fold' s a -> s -> (a -> m r) -> m () -- 'forMOf_' :: 'Monad' m => 'Lens'' s a -> s -> (a -> m r) -> m () -- 'forMOf_' :: 'Monad' m => 'Iso'' s a -> s -> (a -> m r) -> m () -- 'forMOf_' :: 'Monad' m => 'Traversal'' s a -> s -> (a -> m r) -> m () -- 'forMOf_' :: 'Monad' m => 'Prism'' s a -> s -> (a -> m r) -> m () -- @ forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m () forMOf_ :: forall (m :: * -> *) r s a. Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m () forMOf_ = forall a b c. (a -> b -> c) -> b -> a -> c flip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (m :: * -> *) r s a. Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m () mapMOf_ {-# INLINE forMOf_ #-} -- | Evaluate each monadic action referenced by a 'Fold' on the structure from left to right, and ignore the results. -- -- >>> sequenceOf_ both (putStrLn "hello",putStrLn "world") -- hello -- world -- -- @ -- 'Data.Foldable.sequence_' ≡ 'sequenceOf_' 'folded' -- @ -- -- @ -- 'sequenceOf_' :: 'Monad' m => 'Getter' s (m a) -> s -> m () -- 'sequenceOf_' :: 'Monad' m => 'Fold' s (m a) -> s -> m () -- 'sequenceOf_' :: 'Monad' m => 'Lens'' s (m a) -> s -> m () -- 'sequenceOf_' :: 'Monad' m => 'Iso'' s (m a) -> s -> m () -- 'sequenceOf_' :: 'Monad' m => 'Traversal'' s (m a) -> s -> m () -- 'sequenceOf_' :: 'Monad' m => 'Prism'' s (m a) -> s -> m () -- @ sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m () sequenceOf_ :: forall (m :: * -> *) a s. Monad m => Getting (Sequenced a m) s (m a) -> s -> m () sequenceOf_ Getting (Sequenced a m) s (m a) l = forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r liftM forall a. a -> () skip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (m :: * -> *). Sequenced a m -> m a getSequenced forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Sequenced a m) s (m a) l forall a (m :: * -> *). m a -> Sequenced a m Sequenced {-# INLINE sequenceOf_ #-} -- | The sum of a collection of actions, generalizing 'concatOf'. -- -- >>> asumOf both ("hello","world") -- "helloworld" -- -- >>> asumOf each (Nothing, Just "hello", Nothing) -- Just "hello" -- -- @ -- 'asum' ≡ 'asumOf' 'folded' -- @ -- -- @ -- 'asumOf' :: 'Alternative' f => 'Getter' s (f a) -> s -> f a -- 'asumOf' :: 'Alternative' f => 'Fold' s (f a) -> s -> f a -- 'asumOf' :: 'Alternative' f => 'Lens'' s (f a) -> s -> f a -- 'asumOf' :: 'Alternative' f => 'Iso'' s (f a) -> s -> f a -- 'asumOf' :: 'Alternative' f => 'Traversal'' s (f a) -> s -> f a -- 'asumOf' :: 'Alternative' f => 'Prism'' s (f a) -> s -> f a -- @ asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a asumOf :: forall (f :: * -> *) a s. Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a asumOf Getting (Endo (f a)) s (f a) l = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (f a)) s (f a) l forall (f :: * -> *) a. Alternative f => f a -> f a -> f a (<|>) forall (f :: * -> *) a. Alternative f => f a empty {-# INLINE asumOf #-} -- | The sum of a collection of actions, generalizing 'concatOf'. -- -- >>> msumOf both ("hello","world") -- "helloworld" -- -- >>> msumOf each (Nothing, Just "hello", Nothing) -- Just "hello" -- -- @ -- 'msum' ≡ 'msumOf' 'folded' -- @ -- -- @ -- 'msumOf' :: 'MonadPlus' m => 'Getter' s (m a) -> s -> m a -- 'msumOf' :: 'MonadPlus' m => 'Fold' s (m a) -> s -> m a -- 'msumOf' :: 'MonadPlus' m => 'Lens'' s (m a) -> s -> m a -- 'msumOf' :: 'MonadPlus' m => 'Iso'' s (m a) -> s -> m a -- 'msumOf' :: 'MonadPlus' m => 'Traversal'' s (m a) -> s -> m a -- 'msumOf' :: 'MonadPlus' m => 'Prism'' s (m a) -> s -> m a -- @ msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a msumOf :: forall (m :: * -> *) a s. MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a msumOf Getting (Endo (m a)) s (m a) l = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (m a)) s (m a) l forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a mplus forall (m :: * -> *) a. MonadPlus m => m a mzero {-# INLINE msumOf #-} -- | Does the element occur anywhere within a given 'Fold' of the structure? -- -- >>> elemOf both "hello" ("hello","world") -- True -- -- @ -- 'elem' ≡ 'elemOf' 'folded' -- @ -- -- @ -- 'elemOf' :: 'Eq' a => 'Getter' s a -> a -> s -> 'Bool' -- 'elemOf' :: 'Eq' a => 'Fold' s a -> a -> s -> 'Bool' -- 'elemOf' :: 'Eq' a => 'Lens'' s a -> a -> s -> 'Bool' -- 'elemOf' :: 'Eq' a => 'Iso'' s a -> a -> s -> 'Bool' -- 'elemOf' :: 'Eq' a => 'Traversal'' s a -> a -> s -> 'Bool' -- 'elemOf' :: 'Eq' a => 'Prism'' s a -> a -> s -> 'Bool' -- @ elemOf :: Eq a => Getting Any s a -> a -> s -> Bool elemOf :: forall a s. Eq a => Getting Any s a -> a -> s -> Bool elemOf Getting Any s a l = forall s a. Getting Any s a -> (a -> Bool) -> s -> Bool anyOf Getting Any s a l forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a. Eq a => a -> a -> Bool (==) {-# INLINE elemOf #-} -- | Does the element not occur anywhere within a given 'Fold' of the structure? -- -- >>> notElemOf each 'd' ('a','b','c') -- True -- -- >>> notElemOf each 'a' ('a','b','c') -- False -- -- @ -- 'notElem' ≡ 'notElemOf' 'folded' -- @ -- -- @ -- 'notElemOf' :: 'Eq' a => 'Getter' s a -> a -> s -> 'Bool' -- 'notElemOf' :: 'Eq' a => 'Fold' s a -> a -> s -> 'Bool' -- 'notElemOf' :: 'Eq' a => 'Iso'' s a -> a -> s -> 'Bool' -- 'notElemOf' :: 'Eq' a => 'Lens'' s a -> a -> s -> 'Bool' -- 'notElemOf' :: 'Eq' a => 'Traversal'' s a -> a -> s -> 'Bool' -- 'notElemOf' :: 'Eq' a => 'Prism'' s a -> a -> s -> 'Bool' -- @ notElemOf :: Eq a => Getting All s a -> a -> s -> Bool notElemOf :: forall a s. Eq a => Getting All s a -> a -> s -> Bool notElemOf Getting All s a l = forall s a. Getting All s a -> (a -> Bool) -> s -> Bool allOf Getting All s a l forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a. Eq a => a -> a -> Bool (/=) {-# INLINE notElemOf #-} -- | Map a function over all the targets of a 'Fold' of a container and concatenate the resulting lists. -- -- >>> concatMapOf both (\x -> [x, x + 1]) (1,3) -- [1,2,3,4] -- -- @ -- 'concatMap' ≡ 'concatMapOf' 'folded' -- @ -- -- @ -- 'concatMapOf' :: 'Getter' s a -> (a -> [r]) -> s -> [r] -- 'concatMapOf' :: 'Fold' s a -> (a -> [r]) -> s -> [r] -- 'concatMapOf' :: 'Lens'' s a -> (a -> [r]) -> s -> [r] -- 'concatMapOf' :: 'Iso'' s a -> (a -> [r]) -> s -> [r] -- 'concatMapOf' :: 'Traversal'' s a -> (a -> [r]) -> s -> [r] -- @ concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r] concatMapOf :: forall r s a. Getting [r] s a -> (a -> [r]) -> s -> [r] concatMapOf = coerce :: forall a b. Coercible a b => a -> b coerce {-# INLINE concatMapOf #-} -- | Concatenate all of the lists targeted by a 'Fold' into a longer list. -- -- >>> concatOf both ("pan","ama") -- "panama" -- -- @ -- 'concat' ≡ 'concatOf' 'folded' -- 'concatOf' ≡ 'view' -- @ -- -- @ -- 'concatOf' :: 'Getter' s [r] -> s -> [r] -- 'concatOf' :: 'Fold' s [r] -> s -> [r] -- 'concatOf' :: 'Iso'' s [r] -> s -> [r] -- 'concatOf' :: 'Lens'' s [r] -> s -> [r] -- 'concatOf' :: 'Traversal'' s [r] -> s -> [r] -- @ concatOf :: Getting [r] s [r] -> s -> [r] concatOf :: forall r s. Getting [r] s [r] -> s -> [r] concatOf Getting [r] s [r] l = forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. Getting [r] s [r] l forall {k} a (b :: k). a -> Const a b Const {-# INLINE concatOf #-} -- | Calculate the number of targets there are for a 'Fold' in a given container. -- -- /Note:/ This can be rather inefficient for large containers and just like 'length', -- this will not terminate for infinite folds. -- -- @ -- 'length' ≡ 'lengthOf' 'folded' -- @ -- -- >>> lengthOf _1 ("hello",()) -- 1 -- -- >>> lengthOf traverse [1..10] -- 10 -- -- >>> lengthOf (traverse.traverse) [[1,2],[3,4],[5,6]] -- 6 -- -- @ -- 'lengthOf' ('folded' '.' 'folded') :: ('Foldable' f, 'Foldable' g) => f (g a) -> 'Int' -- @ -- -- @ -- 'lengthOf' :: 'Getter' s a -> s -> 'Int' -- 'lengthOf' :: 'Fold' s a -> s -> 'Int' -- 'lengthOf' :: 'Lens'' s a -> s -> 'Int' -- 'lengthOf' :: 'Iso'' s a -> s -> 'Int' -- 'lengthOf' :: 'Traversal'' s a -> s -> 'Int' -- @ lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int lengthOf :: forall s a. Getting (Endo (Endo Int)) s a -> s -> Int lengthOf Getting (Endo (Endo Int)) s a l = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo Int)) s a l (\Int a a _ -> Int a forall a. Num a => a -> a -> a + Int 1) Int 0 {-# INLINE lengthOf #-} -- | Perform a safe 'head' of a 'Fold' or 'Traversal' or retrieve 'Just' the result -- from a 'Getter' or 'Lens'. -- -- When using a 'Traversal' as a partial 'Lens', or a 'Fold' as a partial 'Getter' this can be a convenient -- way to extract the optional value. -- -- Note: if you get stack overflows due to this, you may want to use 'firstOf' instead, which can deal -- more gracefully with heavily left-biased trees. This is because '^?' works by using the -- 'Data.Monoid.First' monoid, which can occasionally cause space leaks. -- -- >>> Left 4 ^?_Left -- Just 4 -- -- >>> Right 4 ^?_Left -- Nothing -- -- >>> "world" ^? ix 3 -- Just 'l' -- -- >>> "world" ^? ix 20 -- Nothing -- -- This operator works as an infix version of 'preview'. -- -- @ -- ('^?') ≡ 'flip' 'preview' -- @ -- -- It may be helpful to think of '^?' as having one of the following -- more specialized types: -- -- @ -- ('^?') :: s -> 'Getter' s a -> 'Maybe' a -- ('^?') :: s -> 'Fold' s a -> 'Maybe' a -- ('^?') :: s -> 'Lens'' s a -> 'Maybe' a -- ('^?') :: s -> 'Iso'' s a -> 'Maybe' a -- ('^?') :: s -> 'Traversal'' s a -> 'Maybe' a -- @ (^?) :: s -> Getting (First a) s a -> Maybe a s s ^? :: forall s a. s -> Getting (First a) s a -> Maybe a ^? Getting (First a) s a l = forall a. First a -> Maybe a getFirst (forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (First a) s a l (forall a. Maybe a -> First a First forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. a -> Maybe a Just) s s) {-# INLINE (^?) #-} -- | Perform an *UNSAFE* 'head' of a 'Fold' or 'Traversal' assuming that it is there. -- -- >>> Left 4 ^?! _Left -- 4 -- -- >>> "world" ^?! ix 3 -- 'l' -- -- @ -- ('^?!') :: s -> 'Getter' s a -> a -- ('^?!') :: s -> 'Fold' s a -> a -- ('^?!') :: s -> 'Lens'' s a -> a -- ('^?!') :: s -> 'Iso'' s a -> a -- ('^?!') :: s -> 'Traversal'' s a -> a -- @ (^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a s s ^?! :: forall s a. HasCallStack => s -> Getting (Endo a) s a -> a ^?! Getting (Endo a) s a l = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo a) s a l forall a b. a -> b -> a const (forall a. HasCallStack => String -> a error String "(^?!): empty Fold") s s {-# INLINE (^?!) #-} -- | Retrieve the 'First' entry of a 'Fold' or 'Traversal' or retrieve 'Just' the result -- from a 'Getter' or 'Lens'. -- -- The answer is computed in a manner that leaks space less than @'preview'@ or @^?'@ -- and gives you back access to the outermost 'Just' constructor more quickly, but does so -- in a way that builds an intermediate structure, and thus may have worse -- constant factors. This also means that it can not be used in any 'Control.Monad.Reader.MonadReader', -- but must instead have 's' passed as its last argument, unlike 'preview'. -- -- Note: this could been named `headOf`. -- -- >>> firstOf traverse [1..10] -- Just 1 -- -- >>> firstOf both (1,2) -- Just 1 -- -- >>> firstOf ignored () -- Nothing -- -- @ -- 'firstOf' :: 'Getter' s a -> s -> 'Maybe' a -- 'firstOf' :: 'Fold' s a -> s -> 'Maybe' a -- 'firstOf' :: 'Lens'' s a -> s -> 'Maybe' a -- 'firstOf' :: 'Iso'' s a -> s -> 'Maybe' a -- 'firstOf' :: 'Traversal'' s a -> s -> 'Maybe' a -- @ firstOf :: Getting (Leftmost a) s a -> s -> Maybe a firstOf :: forall a s. Getting (Leftmost a) s a -> s -> Maybe a firstOf Getting (Leftmost a) s a l = forall a. Leftmost a -> Maybe a getLeftmost forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Leftmost a) s a l forall a. a -> Leftmost a LLeaf {-# INLINE firstOf #-} -- | Retrieve the 'Data.Semigroup.First' entry of a 'Fold1' or 'Traversal1' or the result from a 'Getter' or 'Lens'. -- -- >>> first1Of traverse1 (1 :| [2..10]) -- 1 -- -- >>> first1Of both1 (1,2) -- 1 -- -- /Note:/ this is different from '^.'. -- -- >>> first1Of traverse1 ([1,2] :| [[3,4],[5,6]]) -- [1,2] -- -- >>> ([1,2] :| [[3,4],[5,6]]) ^. traverse1 -- [1,2,3,4,5,6] -- -- @ -- 'first1Of' :: 'Getter' s a -> s -> a -- 'first1Of' :: 'Fold1' s a -> s -> a -- 'first1Of' :: 'Lens'' s a -> s -> a -- 'first1Of' :: 'Iso'' s a -> s -> a -- 'first1Of' :: 'Traversal1'' s a -> s -> a -- @ first1Of :: Getting (Semi.First a) s a -> s -> a first1Of :: forall a s. Getting (First a) s a -> s -> a first1Of Getting (First a) s a l = forall a. First a -> a Semi.getFirst forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (First a) s a l forall a. a -> First a Semi.First -- | Retrieve the 'Last' entry of a 'Fold' or 'Traversal' or retrieve 'Just' the result -- from a 'Getter' or 'Lens'. -- -- The answer is computed in a manner that leaks space less than @'ala' 'Last' '.' 'foldMapOf'@ -- and gives you back access to the outermost 'Just' constructor more quickly, but may have worse -- constant factors. -- -- >>> lastOf traverse [1..10] -- Just 10 -- -- >>> lastOf both (1,2) -- Just 2 -- -- >>> lastOf ignored () -- Nothing -- -- @ -- 'lastOf' :: 'Getter' s a -> s -> 'Maybe' a -- 'lastOf' :: 'Fold' s a -> s -> 'Maybe' a -- 'lastOf' :: 'Lens'' s a -> s -> 'Maybe' a -- 'lastOf' :: 'Iso'' s a -> s -> 'Maybe' a -- 'lastOf' :: 'Traversal'' s a -> s -> 'Maybe' a -- @ lastOf :: Getting (Rightmost a) s a -> s -> Maybe a lastOf :: forall a s. Getting (Rightmost a) s a -> s -> Maybe a lastOf Getting (Rightmost a) s a l = forall a. Rightmost a -> Maybe a getRightmost forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Rightmost a) s a l forall a. a -> Rightmost a RLeaf {-# INLINE lastOf #-} -- | Retrieve the 'Data.Semigroup.Last' entry of a 'Fold1' or 'Traversal1' or retrieve the result -- from a 'Getter' or 'Lens'.o -- -- >>> last1Of traverse1 (1 :| [2..10]) -- 10 -- -- >>> last1Of both1 (1,2) -- 2 -- -- @ -- 'last1Of' :: 'Getter' s a -> s -> 'Maybe' a -- 'last1Of' :: 'Fold1' s a -> s -> 'Maybe' a -- 'last1Of' :: 'Lens'' s a -> s -> 'Maybe' a -- 'last1Of' :: 'Iso'' s a -> s -> 'Maybe' a -- 'last1Of' :: 'Traversal1'' s a -> s -> 'Maybe' a -- @ last1Of :: Getting (Semi.Last a) s a -> s -> a last1Of :: forall a s. Getting (Last a) s a -> s -> a last1Of Getting (Last a) s a l = forall a. Last a -> a Semi.getLast forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Last a) s a l forall a. a -> Last a Semi.Last -- | Returns 'True' if this 'Fold' or 'Traversal' has no targets in the given container. -- -- Note: 'nullOf' on a valid 'Iso', 'Lens' or 'Getter' should always return 'False'. -- -- @ -- 'null' ≡ 'nullOf' 'folded' -- @ -- -- This may be rather inefficient compared to the 'null' check of many containers. -- -- >>> nullOf _1 (1,2) -- False -- -- >>> nullOf ignored () -- True -- -- >>> nullOf traverse [] -- True -- -- >>> nullOf (element 20) [1..10] -- True -- -- @ -- 'nullOf' ('folded' '.' '_1' '.' 'folded') :: ('Foldable' f, 'Foldable' g) => f (g a, b) -> 'Bool' -- @ -- -- @ -- 'nullOf' :: 'Getter' s a -> s -> 'Bool' -- 'nullOf' :: 'Fold' s a -> s -> 'Bool' -- 'nullOf' :: 'Iso'' s a -> s -> 'Bool' -- 'nullOf' :: 'Lens'' s a -> s -> 'Bool' -- 'nullOf' :: 'Traversal'' s a -> s -> 'Bool' -- @ nullOf :: Getting All s a -> s -> Bool nullOf :: forall s a. Getting All s a -> s -> Bool nullOf = forall s a. Getting All s a -> s -> Bool hasn't {-# INLINE nullOf #-} -- | Returns 'True' if this 'Fold' or 'Traversal' has any targets in the given container. -- -- A more \"conversational\" alias for this combinator is 'has'. -- -- Note: 'notNullOf' on a valid 'Iso', 'Lens' or 'Getter' should always return 'True'. -- -- @ -- 'not' '.' 'null' ≡ 'notNullOf' 'folded' -- @ -- -- This may be rather inefficient compared to the @'not' '.' 'null'@ check of many containers. -- -- >>> notNullOf _1 (1,2) -- True -- -- >>> notNullOf traverse [1..10] -- True -- -- >>> notNullOf folded [] -- False -- -- >>> notNullOf (element 20) [1..10] -- False -- -- @ -- 'notNullOf' ('folded' '.' '_1' '.' 'folded') :: ('Foldable' f, 'Foldable' g) => f (g a, b) -> 'Bool' -- @ -- -- @ -- 'notNullOf' :: 'Getter' s a -> s -> 'Bool' -- 'notNullOf' :: 'Fold' s a -> s -> 'Bool' -- 'notNullOf' :: 'Iso'' s a -> s -> 'Bool' -- 'notNullOf' :: 'Lens'' s a -> s -> 'Bool' -- 'notNullOf' :: 'Traversal'' s a -> s -> 'Bool' -- @ notNullOf :: Getting Any s a -> s -> Bool notNullOf :: forall s a. Getting Any s a -> s -> Bool notNullOf = forall s a. Getting Any s a -> s -> Bool has {-# INLINE notNullOf #-} -- | Obtain the maximum element (if any) targeted by a 'Fold' or 'Traversal' safely. -- -- Note: 'maximumOf' on a valid 'Iso', 'Lens' or 'Getter' will always return 'Just' a value. -- -- >>> maximumOf traverse [1..10] -- Just 10 -- -- >>> maximumOf traverse [] -- Nothing -- -- >>> maximumOf (folded.filtered even) [1,4,3,6,7,9,2] -- Just 6 -- -- @ -- 'maximum' ≡ 'fromMaybe' ('error' \"empty\") '.' 'maximumOf' 'folded' -- @ -- -- In the interest of efficiency, This operation has semantics more strict than strictly necessary. -- @'rmap' 'getMax' ('foldMapOf' l 'Max')@ has lazier semantics but could leak memory. -- -- @ -- 'maximumOf' :: 'Ord' a => 'Getter' s a -> s -> 'Maybe' a -- 'maximumOf' :: 'Ord' a => 'Fold' s a -> s -> 'Maybe' a -- 'maximumOf' :: 'Ord' a => 'Iso'' s a -> s -> 'Maybe' a -- 'maximumOf' :: 'Ord' a => 'Lens'' s a -> s -> 'Maybe' a -- 'maximumOf' :: 'Ord' a => 'Traversal'' s a -> s -> 'Maybe' a -- @ maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a maximumOf :: forall a s. Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a maximumOf Getting (Endo (Endo (Maybe a))) s a l = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo (Maybe a))) s a l forall {a}. Ord a => Maybe a -> a -> Maybe a mf forall a. Maybe a Nothing where mf :: Maybe a -> a -> Maybe a mf Maybe a Nothing a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a y mf (Just a x) a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! forall a. Ord a => a -> a -> a max a x a y {-# INLINE maximumOf #-} -- | Obtain the maximum element targeted by a 'Fold1' or 'Traversal1'. -- -- >>> maximum1Of traverse1 (1 :| [2..10]) -- 10 -- -- @ -- 'maximum1Of' :: 'Ord' a => 'Getter' s a -> s -> a -- 'maximum1Of' :: 'Ord' a => 'Fold1' s a -> s -> a -- 'maximum1Of' :: 'Ord' a => 'Iso'' s a -> s -> a -- 'maximum1Of' :: 'Ord' a => 'Lens'' s a -> s -> a -- 'maximum1Of' :: 'Ord' a => 'Traversal1'' s a -> s -> a -- @ maximum1Of :: Ord a => Getting (Semi.Max a) s a -> s -> a maximum1Of :: forall a s. Ord a => Getting (Max a) s a -> s -> a maximum1Of Getting (Max a) s a l = forall a. Max a -> a Semi.getMax forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Max a) s a l forall a. a -> Max a Semi.Max {-# INLINE maximum1Of #-} -- | Obtain the minimum element (if any) targeted by a 'Fold' or 'Traversal' safely. -- -- Note: 'minimumOf' on a valid 'Iso', 'Lens' or 'Getter' will always return 'Just' a value. -- -- >>> minimumOf traverse [1..10] -- Just 1 -- -- >>> minimumOf traverse [] -- Nothing -- -- >>> minimumOf (folded.filtered even) [1,4,3,6,7,9,2] -- Just 2 -- -- @ -- 'minimum' ≡ 'Data.Maybe.fromMaybe' ('error' \"empty\") '.' 'minimumOf' 'folded' -- @ -- -- In the interest of efficiency, This operation has semantics more strict than strictly necessary. -- @'rmap' 'getMin' ('foldMapOf' l 'Min')@ has lazier semantics but could leak memory. -- -- -- @ -- 'minimumOf' :: 'Ord' a => 'Getter' s a -> s -> 'Maybe' a -- 'minimumOf' :: 'Ord' a => 'Fold' s a -> s -> 'Maybe' a -- 'minimumOf' :: 'Ord' a => 'Iso'' s a -> s -> 'Maybe' a -- 'minimumOf' :: 'Ord' a => 'Lens'' s a -> s -> 'Maybe' a -- 'minimumOf' :: 'Ord' a => 'Traversal'' s a -> s -> 'Maybe' a -- @ minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a minimumOf :: forall a s. Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a minimumOf Getting (Endo (Endo (Maybe a))) s a l = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo (Maybe a))) s a l forall {a}. Ord a => Maybe a -> a -> Maybe a mf forall a. Maybe a Nothing where mf :: Maybe a -> a -> Maybe a mf Maybe a Nothing a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a y mf (Just a x) a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! forall a. Ord a => a -> a -> a min a x a y {-# INLINE minimumOf #-} -- | Obtain the minimum element targeted by a 'Fold1' or 'Traversal1'. -- -- >>> minimum1Of traverse1 (1 :| [2..10]) -- 1 -- -- @ -- 'minimum1Of' :: 'Ord' a => 'Getter' s a -> s -> a -- 'minimum1Of' :: 'Ord' a => 'Fold1' s a -> s -> a -- 'minimum1Of' :: 'Ord' a => 'Iso'' s a -> s -> a -- 'minimum1Of' :: 'Ord' a => 'Lens'' s a -> s -> a -- 'minimum1Of' :: 'Ord' a => 'Traversal1'' s a -> s -> a -- @ minimum1Of :: Ord a => Getting (Semi.Min a) s a -> s -> a minimum1Of :: forall a s. Ord a => Getting (Min a) s a -> s -> a minimum1Of Getting (Min a) s a l = forall a. Min a -> a Semi.getMin forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (Min a) s a l forall a. a -> Min a Semi.Min {-# INLINE minimum1Of #-} -- | Obtain the maximum element (if any) targeted by a 'Fold', 'Traversal', 'Lens', 'Iso', -- or 'Getter' according to a user supplied 'Ordering'. -- -- >>> maximumByOf traverse (compare `on` length) ["mustard","relish","ham"] -- Just "mustard" -- -- In the interest of efficiency, This operation has semantics more strict than strictly necessary. -- -- @ -- 'Data.Foldable.maximumBy' cmp ≡ 'Data.Maybe.fromMaybe' ('error' \"empty\") '.' 'maximumByOf' 'folded' cmp -- @ -- -- @ -- 'maximumByOf' :: 'Getter' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'maximumByOf' :: 'Fold' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'maximumByOf' :: 'Iso'' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'maximumByOf' :: 'Lens'' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'maximumByOf' :: 'Traversal'' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- @ maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a maximumByOf :: forall a s. Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a maximumByOf Getting (Endo (Endo (Maybe a))) s a l a -> a -> Ordering cmp = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo (Maybe a))) s a l Maybe a -> a -> Maybe a mf forall a. Maybe a Nothing where mf :: Maybe a -> a -> Maybe a mf Maybe a Nothing a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a y mf (Just a x) a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! if a -> a -> Ordering cmp a x a y forall a. Eq a => a -> a -> Bool == Ordering GT then a x else a y {-# INLINE maximumByOf #-} -- | Obtain the minimum element (if any) targeted by a 'Fold', 'Traversal', 'Lens', 'Iso' -- or 'Getter' according to a user supplied 'Ordering'. -- -- In the interest of efficiency, This operation has semantics more strict than strictly necessary. -- -- >>> minimumByOf traverse (compare `on` length) ["mustard","relish","ham"] -- Just "ham" -- -- @ -- 'minimumBy' cmp ≡ 'Data.Maybe.fromMaybe' ('error' \"empty\") '.' 'minimumByOf' 'folded' cmp -- @ -- -- @ -- 'minimumByOf' :: 'Getter' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'minimumByOf' :: 'Fold' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'minimumByOf' :: 'Iso'' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'minimumByOf' :: 'Lens'' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- 'minimumByOf' :: 'Traversal'' s a -> (a -> a -> 'Ordering') -> s -> 'Maybe' a -- @ minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a minimumByOf :: forall a s. Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a minimumByOf Getting (Endo (Endo (Maybe a))) s a l a -> a -> Ordering cmp = forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo (Maybe a))) s a l Maybe a -> a -> Maybe a mf forall a. Maybe a Nothing where mf :: Maybe a -> a -> Maybe a mf Maybe a Nothing a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a y mf (Just a x) a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! if a -> a -> Ordering cmp a x a y forall a. Eq a => a -> a -> Bool == Ordering GT then a y else a x {-# INLINE minimumByOf #-} -- | The 'findOf' function takes a 'Lens' (or 'Getter', 'Iso', 'Fold', or 'Traversal'), -- a predicate and a structure and returns the leftmost element of the structure -- matching the predicate, or 'Nothing' if there is no such element. -- -- >>> findOf each even (1,3,4,6) -- Just 4 -- -- >>> findOf folded even [1,3,5,7] -- Nothing -- -- @ -- 'findOf' :: 'Getter' s a -> (a -> 'Bool') -> s -> 'Maybe' a -- 'findOf' :: 'Fold' s a -> (a -> 'Bool') -> s -> 'Maybe' a -- 'findOf' :: 'Iso'' s a -> (a -> 'Bool') -> s -> 'Maybe' a -- 'findOf' :: 'Lens'' s a -> (a -> 'Bool') -> s -> 'Maybe' a -- 'findOf' :: 'Traversal'' s a -> (a -> 'Bool') -> s -> 'Maybe' a -- @ -- -- @ -- 'Data.Foldable.find' ≡ 'findOf' 'folded' -- 'ifindOf' l ≡ 'findOf' l '.' 'Indexed' -- @ -- -- A simpler version that didn't permit indexing, would be: -- -- @ -- 'findOf' :: 'Getting' ('Endo' ('Maybe' a)) s a -> (a -> 'Bool') -> s -> 'Maybe' a -- 'findOf' l p = 'foldrOf' l (\a y -> if p a then 'Just' a else y) 'Nothing' -- @ findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a findOf :: forall a s. Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a findOf Getting (Endo (Maybe a)) s a l a -> Bool f = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (Maybe a)) s a l (\a a Maybe a y -> if a -> Bool f a a then forall a. a -> Maybe a Just a a else Maybe a y) forall a. Maybe a Nothing {-# INLINE findOf #-} -- | The 'findMOf' function takes a 'Lens' (or 'Getter', 'Iso', 'Fold', or 'Traversal'), -- a monadic predicate and a structure and returns in the monad the leftmost element of the structure -- matching the predicate, or 'Nothing' if there is no such element. -- -- >>> findMOf each ( \x -> print ("Checking " ++ show x) >> return (even x)) (1,3,4,6) -- "Checking 1" -- "Checking 3" -- "Checking 4" -- Just 4 -- -- >>> findMOf each ( \x -> print ("Checking " ++ show x) >> return (even x)) (1,3,5,7) -- "Checking 1" -- "Checking 3" -- "Checking 5" -- "Checking 7" -- Nothing -- -- @ -- 'findMOf' :: ('Monad' m, 'Getter' s a) -> (a -> m 'Bool') -> s -> m ('Maybe' a) -- 'findMOf' :: ('Monad' m, 'Fold' s a) -> (a -> m 'Bool') -> s -> m ('Maybe' a) -- 'findMOf' :: ('Monad' m, 'Iso'' s a) -> (a -> m 'Bool') -> s -> m ('Maybe' a) -- 'findMOf' :: ('Monad' m, 'Lens'' s a) -> (a -> m 'Bool') -> s -> m ('Maybe' a) -- 'findMOf' :: ('Monad' m, 'Traversal'' s a) -> (a -> m 'Bool') -> s -> m ('Maybe' a) -- @ -- -- @ -- 'findMOf' 'folded' :: (Monad m, Foldable f) => (a -> m Bool) -> f a -> m (Maybe a) -- 'ifindMOf' l ≡ 'findMOf' l '.' 'Indexed' -- @ -- -- A simpler version that didn't permit indexing, would be: -- -- @ -- 'findMOf' :: Monad m => 'Getting' ('Endo' (m ('Maybe' a))) s a -> (a -> m 'Bool') -> s -> m ('Maybe' a) -- 'findMOf' l p = 'foldrOf' l (\a y -> p a >>= \x -> if x then return ('Just' a) else y) $ return 'Nothing' -- @ findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a) findMOf :: forall (m :: * -> *) a s. Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a) findMOf Getting (Endo (m (Maybe a))) s a l a -> m Bool f = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (m (Maybe a))) s a l (\a a m (Maybe a) y -> a -> m Bool f a a forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \Bool r -> if Bool r then forall (m :: * -> *) a. Monad m => a -> m a return (forall a. a -> Maybe a Just a a) else m (Maybe a) y) forall a b. (a -> b) -> a -> b $ forall (m :: * -> *) a. Monad m => a -> m a return forall a. Maybe a Nothing {-# INLINE findMOf #-} -- | The 'lookupOf' function takes a 'Fold' (or 'Getter', 'Traversal', -- 'Lens', 'Iso', etc.), a key, and a structure containing key/value pairs. -- It returns the first value corresponding to the given key. This function -- generalizes 'lookup' to work on an arbitrary 'Fold' instead of lists. -- -- >>> lookupOf folded 4 [(2, 'a'), (4, 'b'), (4, 'c')] -- Just 'b' -- -- >>> lookupOf each 2 [(2, 'a'), (4, 'b'), (4, 'c')] -- Just 'a' -- -- @ -- 'lookupOf' :: 'Eq' k => 'Fold' s (k,v) -> k -> s -> 'Maybe' v -- @ lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k,v) -> k -> s -> Maybe v lookupOf :: forall k v s. Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v lookupOf Getting (Endo (Maybe v)) s (k, v) l k k = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (Maybe v)) s (k, v) l (\(k k',v v) Maybe v next -> if k k forall a. Eq a => a -> a -> Bool == k k' then forall a. a -> Maybe a Just v v else Maybe v next) forall a. Maybe a Nothing {-# INLINE lookupOf #-} -- | A variant of 'foldrOf' that has no base case and thus may only be applied -- to lenses and structures such that the 'Lens' views at least one element of -- the structure. -- -- >>> foldr1Of each (+) (1,2,3,4) -- 10 -- -- @ -- 'foldr1Of' l f ≡ 'Prelude.foldr1' f '.' 'toListOf' l -- 'Data.Foldable.foldr1' ≡ 'foldr1Of' 'folded' -- @ -- -- @ -- 'foldr1Of' :: 'Getter' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of' :: 'Fold' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of' :: 'Iso'' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of' :: 'Lens'' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of' :: 'Traversal'' s a -> (a -> a -> a) -> s -> a -- @ foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a foldr1Of :: forall a s. HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a foldr1Of Getting (Endo (Maybe a)) s a l a -> a -> a f s xs = forall a. a -> Maybe a -> a fromMaybe (forall a. HasCallStack => String -> a error String "foldr1Of: empty structure") (forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (Maybe a)) s a l a -> Maybe a -> Maybe a mf forall a. Maybe a Nothing s xs) where mf :: a -> Maybe a -> Maybe a mf a x Maybe a my = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $ case Maybe a my of Maybe a Nothing -> a x Just a y -> a -> a -> a f a x a y {-# INLINE foldr1Of #-} -- | A variant of 'foldlOf' that has no base case and thus may only be applied to lenses and structures such -- that the 'Lens' views at least one element of the structure. -- -- >>> foldl1Of each (+) (1,2,3,4) -- 10 -- -- @ -- 'foldl1Of' l f ≡ 'Prelude.foldl1' f '.' 'toListOf' l -- 'Data.Foldable.foldl1' ≡ 'foldl1Of' 'folded' -- @ -- -- @ -- 'foldl1Of' :: 'Getter' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of' :: 'Fold' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of' :: 'Iso'' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of' :: 'Lens'' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of' :: 'Traversal'' s a -> (a -> a -> a) -> s -> a -- @ foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a foldl1Of :: forall a s. HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a foldl1Of Getting (Dual (Endo (Maybe a))) s a l a -> a -> a f s xs = forall a. a -> Maybe a -> a fromMaybe (forall a. HasCallStack => String -> a error String "foldl1Of: empty structure") (forall r s a. Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf Getting (Dual (Endo (Maybe a))) s a l Maybe a -> a -> Maybe a mf forall a. Maybe a Nothing s xs) where mf :: Maybe a -> a -> Maybe a mf Maybe a mx a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $ case Maybe a mx of Maybe a Nothing -> a y Just a x -> a -> a -> a f a x a y {-# INLINE foldl1Of #-} -- | Strictly fold right over the elements of a structure. -- -- @ -- 'Data.Foldable.foldr'' ≡ 'foldrOf'' 'folded' -- @ -- -- @ -- 'foldrOf'' :: 'Getter' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf'' :: 'Fold' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf'' :: 'Iso'' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf'' :: 'Lens'' s a -> (a -> r -> r) -> r -> s -> r -- 'foldrOf'' :: 'Traversal'' s a -> (a -> r -> r) -> r -> s -> r -- @ foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r foldrOf' :: forall r s a. Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r foldrOf' Getting (Dual (Endo (Endo r))) s a l a -> r -> r f r z0 s xs = forall r s a. Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf Getting (Dual (Endo (Endo r))) s a l Endo r -> a -> Endo r f' (forall a. (a -> a) -> Endo a Endo forall a. a -> a id) s xs forall a. Endo a -> a -> a `appEndo` r z0 where f' :: Endo r -> a -> Endo r f' (Endo r -> r k) a x = forall a. (a -> a) -> Endo a Endo forall a b. (a -> b) -> a -> b $ \ r z -> r -> r k forall a b. (a -> b) -> a -> b $! a -> r -> r f a x r z {-# INLINE foldrOf' #-} -- | Fold over the elements of a structure, associating to the left, but strictly. -- -- @ -- 'Data.Foldable.foldl'' ≡ 'foldlOf'' 'folded' -- @ -- -- @ -- 'foldlOf'' :: 'Getter' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf'' :: 'Fold' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf'' :: 'Iso'' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf'' :: 'Lens'' s a -> (r -> a -> r) -> r -> s -> r -- 'foldlOf'' :: 'Traversal'' s a -> (r -> a -> r) -> r -> s -> r -- @ foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' :: forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo r)) s a l r -> a -> r f r z0 s xs = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (Endo r)) s a l a -> Endo r -> Endo r f' (forall a. (a -> a) -> Endo a Endo forall a. a -> a id) s xs forall a. Endo a -> a -> a `appEndo` r z0 where f' :: a -> Endo r -> Endo r f' a x (Endo r -> r k) = forall a. (a -> a) -> Endo a Endo forall a b. (a -> b) -> a -> b $ \r z -> r -> r k forall a b. (a -> b) -> a -> b $! r -> a -> r f r z a x {-# INLINE foldlOf' #-} -- | A variant of 'foldrOf'' that has no base case and thus may only be applied -- to folds and structures such that the fold views at least one element of the -- structure. -- -- @ -- 'foldr1Of' l f ≡ 'Prelude.foldr1' f '.' 'toListOf' l -- @ -- -- @ -- 'foldr1Of'' :: 'Getter' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of'' :: 'Fold' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of'' :: 'Iso'' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of'' :: 'Lens'' s a -> (a -> a -> a) -> s -> a -- 'foldr1Of'' :: 'Traversal'' s a -> (a -> a -> a) -> s -> a -- @ foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a foldr1Of' :: forall a s. HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a foldr1Of' Getting (Dual (Endo (Endo (Maybe a)))) s a l a -> a -> a f s xs = forall a. a -> Maybe a -> a fromMaybe (forall a. HasCallStack => String -> a error String "foldr1Of': empty structure") (forall r s a. Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r foldrOf' Getting (Dual (Endo (Endo (Maybe a)))) s a l a -> Maybe a -> Maybe a mf forall a. Maybe a Nothing s xs) where mf :: a -> Maybe a -> Maybe a mf a x Maybe a Nothing = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a x mf a x (Just a y) = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a -> a -> a f a x a y {-# INLINE foldr1Of' #-} -- | A variant of 'foldlOf'' that has no base case and thus may only be applied -- to folds and structures such that the fold views at least one element of -- the structure. -- -- @ -- 'foldl1Of'' l f ≡ 'Data.List.foldl1'' f '.' 'toListOf' l -- @ -- -- @ -- 'foldl1Of'' :: 'Getter' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of'' :: 'Fold' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of'' :: 'Iso'' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of'' :: 'Lens'' s a -> (a -> a -> a) -> s -> a -- 'foldl1Of'' :: 'Traversal'' s a -> (a -> a -> a) -> s -> a -- @ foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a foldl1Of' :: forall a s. HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a foldl1Of' Getting (Endo (Endo (Maybe a))) s a l a -> a -> a f s xs = forall a. a -> Maybe a -> a fromMaybe (forall a. HasCallStack => String -> a error String "foldl1Of': empty structure") (forall r s a. Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf' Getting (Endo (Endo (Maybe a))) s a l Maybe a -> a -> Maybe a mf forall a. Maybe a Nothing s xs) where mf :: Maybe a -> a -> Maybe a mf Maybe a Nothing a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a y mf (Just a x) a y = forall a. a -> Maybe a Just forall a b. (a -> b) -> a -> b $! a -> a -> a f a x a y {-# INLINE foldl1Of' #-} -- | Monadic fold over the elements of a structure, associating to the right, -- i.e. from right to left. -- -- @ -- 'Data.Foldable.foldrM' ≡ 'foldrMOf' 'folded' -- @ -- -- @ -- 'foldrMOf' :: 'Monad' m => 'Getter' s a -> (a -> r -> m r) -> r -> s -> m r -- 'foldrMOf' :: 'Monad' m => 'Fold' s a -> (a -> r -> m r) -> r -> s -> m r -- 'foldrMOf' :: 'Monad' m => 'Iso'' s a -> (a -> r -> m r) -> r -> s -> m r -- 'foldrMOf' :: 'Monad' m => 'Lens'' s a -> (a -> r -> m r) -> r -> s -> m r -- 'foldrMOf' :: 'Monad' m => 'Traversal'' s a -> (a -> r -> m r) -> r -> s -> m r -- @ foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r foldrMOf :: forall (m :: * -> *) r s a. Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r foldrMOf Getting (Dual (Endo (r -> m r))) s a l a -> r -> m r f r z0 s xs = forall r s a. Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r foldlOf Getting (Dual (Endo (r -> m r))) s a l forall {b}. (r -> m b) -> a -> r -> m b f' forall (m :: * -> *) a. Monad m => a -> m a return s xs r z0 where f' :: (r -> m b) -> a -> r -> m b f' r -> m b k a x r z = a -> r -> m r f a x r z forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= r -> m b k {-# INLINE foldrMOf #-} -- | Monadic fold over the elements of a structure, associating to the left, -- i.e. from left to right. -- -- @ -- 'Data.Foldable.foldlM' ≡ 'foldlMOf' 'folded' -- @ -- -- @ -- 'foldlMOf' :: 'Monad' m => 'Getter' s a -> (r -> a -> m r) -> r -> s -> m r -- 'foldlMOf' :: 'Monad' m => 'Fold' s a -> (r -> a -> m r) -> r -> s -> m r -- 'foldlMOf' :: 'Monad' m => 'Iso'' s a -> (r -> a -> m r) -> r -> s -> m r -- 'foldlMOf' :: 'Monad' m => 'Lens'' s a -> (r -> a -> m r) -> r -> s -> m r -- 'foldlMOf' :: 'Monad' m => 'Traversal'' s a -> (r -> a -> m r) -> r -> s -> m r -- @ foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r foldlMOf :: forall (m :: * -> *) r s a. Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r foldlMOf Getting (Endo (r -> m r)) s a l r -> a -> m r f r z0 s xs = forall r s a. Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r foldrOf Getting (Endo (r -> m r)) s a l forall {b}. a -> (r -> m b) -> r -> m b f' forall (m :: * -> *) a. Monad m => a -> m a return s xs r z0 where f' :: a -> (r -> m b) -> r -> m b f' a x r -> m b k r z = r -> a -> m r f r z a x forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= r -> m b k {-# INLINE foldlMOf #-} -- | Check to see if this 'Fold' or 'Traversal' matches 1 or more entries. -- -- >>> has (element 0) [] -- False -- -- >>> has _Left (Left 12) -- True -- -- >>> has _Right (Left 12) -- False -- -- This will always return 'True' for a 'Lens' or 'Getter'. -- -- >>> has _1 ("hello","world") -- True -- -- @ -- 'has' :: 'Getter' s a -> s -> 'Bool' -- 'has' :: 'Fold' s a -> s -> 'Bool' -- 'has' :: 'Iso'' s a -> s -> 'Bool' -- 'has' :: 'Lens'' s a -> s -> 'Bool' -- 'has' :: 'Traversal'' s a -> s -> 'Bool' -- @ has :: Getting Any s a -> s -> Bool has :: forall s a. Getting Any s a -> s -> Bool has Getting Any s a l = Any -> Bool getAny forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting Any s a l (\a _ -> Bool -> Any Any Bool True) {-# INLINE has #-} -- | Check to see if this 'Fold' or 'Traversal' has no matches. -- -- >>> hasn't _Left (Right 12) -- True -- -- >>> hasn't _Left (Left 12) -- False hasn't :: Getting All s a -> s -> Bool hasn't :: forall s a. Getting All s a -> s -> Bool hasn't Getting All s a l = All -> Bool getAll forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting All s a l (\a _ -> Bool -> All All Bool False) {-# INLINE hasn't #-} ------------------------------------------------------------------------------ -- Pre ------------------------------------------------------------------------------ -- | This converts a 'Fold' to a 'IndexPreservingGetter' that returns the first element, if it -- exists, as a 'Maybe'. -- -- @ -- 'pre' :: 'Getter' s a -> 'IndexPreservingGetter' s ('Maybe' a) -- 'pre' :: 'Fold' s a -> 'IndexPreservingGetter' s ('Maybe' a) -- 'pre' :: 'Traversal'' s a -> 'IndexPreservingGetter' s ('Maybe' a) -- 'pre' :: 'Lens'' s a -> 'IndexPreservingGetter' s ('Maybe' a) -- 'pre' :: 'Iso'' s a -> 'IndexPreservingGetter' s ('Maybe' a) -- 'pre' :: 'Prism'' s a -> 'IndexPreservingGetter' s ('Maybe' a) -- @ pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a) pre :: forall a s. Getting (First a) s a -> IndexPreservingGetter s (Maybe a) pre Getting (First a) s a l = forall (p :: * -> * -> *) a b c d. Profunctor p => (a -> b) -> (c -> d) -> p b c -> p a d dimap (forall a. First a -> Maybe a getFirst forall b c a. (b -> c) -> (a -> b) -> a -> c . forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. Getting (First a) s a l (forall {k} a (b :: k). a -> Const a b Const forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. Maybe a -> First a First forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. a -> Maybe a Just)) forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom {-# INLINE pre #-} -- | This converts an 'IndexedFold' to an 'IndexPreservingGetter' that returns the first index -- and element, if they exist, as a 'Maybe'. -- -- @ -- 'ipre' :: 'IndexedGetter' i s a -> 'IndexPreservingGetter' s ('Maybe' (i, a)) -- 'ipre' :: 'IndexedFold' i s a -> 'IndexPreservingGetter' s ('Maybe' (i, a)) -- 'ipre' :: 'IndexedTraversal'' i s a -> 'IndexPreservingGetter' s ('Maybe' (i, a)) -- 'ipre' :: 'IndexedLens'' i s a -> 'IndexPreservingGetter' s ('Maybe' (i, a)) -- @ ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a)) ipre :: forall i a s. IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a)) ipre IndexedGetting i (First (i, a)) s a l = forall (p :: * -> * -> *) a b c d. Profunctor p => (a -> b) -> (c -> d) -> p b c -> p a d dimap (forall a. First a -> Maybe a getFirst forall b c a. (b -> c) -> (a -> b) -> a -> c . forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. IndexedGetting i (First (i, a)) s a l (forall i a b. (i -> a -> b) -> Indexed i a b Indexed forall a b. (a -> b) -> a -> b $ \i i a a -> forall {k} a (b :: k). a -> Const a b Const (forall a. Maybe a -> First a First (forall a. a -> Maybe a Just (i i, a a))))) forall (f :: * -> *) a b. (Functor f, Contravariant f) => f a -> f b phantom {-# INLINE ipre #-} ------------------------------------------------------------------------------ -- Preview ------------------------------------------------------------------------------ -- | Retrieve the first value targeted by a 'Fold' or 'Traversal' (or 'Just' the result -- from a 'Getter' or 'Lens'). See also 'firstOf' and '^?', which are similar with -- some subtle differences (explained below). -- -- @ -- 'Data.Maybe.listToMaybe' '.' 'toList' ≡ 'preview' 'folded' -- @ -- -- @ -- 'preview' = 'view' '.' 'pre' -- @ -- -- -- Unlike '^?', this function uses a -- 'Control.Monad.Reader.MonadReader' to read the value to be focused in on. -- This allows one to pass the value as the last argument by using the -- 'Control.Monad.Reader.MonadReader' instance for @(->) s@ -- However, it may also be used as part of some deeply nested transformer stack. -- -- 'preview' uses a monoidal value to obtain the result. -- This means that it generally has good performance, but can occasionally cause space leaks -- or even stack overflows on some data types. -- There is another function, 'firstOf', which avoids these issues at the cost of -- a slight constant performance cost and a little less flexibility. -- -- It may be helpful to think of 'preview' as having one of the following -- more specialized types: -- -- @ -- 'preview' :: 'Getter' s a -> s -> 'Maybe' a -- 'preview' :: 'Fold' s a -> s -> 'Maybe' a -- 'preview' :: 'Lens'' s a -> s -> 'Maybe' a -- 'preview' :: 'Iso'' s a -> s -> 'Maybe' a -- 'preview' :: 'Traversal'' s a -> s -> 'Maybe' a -- @ -- -- -- @ -- 'preview' :: 'MonadReader' s m => 'Getter' s a -> m ('Maybe' a) -- 'preview' :: 'MonadReader' s m => 'Fold' s a -> m ('Maybe' a) -- 'preview' :: 'MonadReader' s m => 'Lens'' s a -> m ('Maybe' a) -- 'preview' :: 'MonadReader' s m => 'Iso'' s a -> m ('Maybe' a) -- 'preview' :: 'MonadReader' s m => 'Traversal'' s a -> m ('Maybe' a) -- -- @ preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a) preview :: forall s (m :: * -> *) a. MonadReader s m => Getting (First a) s a -> m (Maybe a) preview Getting (First a) s a l = forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a asks (forall a. First a -> Maybe a getFirst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (First a) s a l (forall a. Maybe a -> First a First forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. a -> Maybe a Just)) {-# INLINE preview #-} -- | Retrieve the first index and value targeted by a 'Fold' or 'Traversal' (or 'Just' the result -- from a 'Getter' or 'Lens'). See also ('^@?'). -- -- @ -- 'ipreview' = 'view' '.' 'ipre' -- @ -- -- This is usually applied in the 'Control.Monad.Reader.Reader' -- 'Control.Monad.Monad' @(->) s@. -- -- @ -- 'ipreview' :: 'IndexedGetter' i s a -> s -> 'Maybe' (i, a) -- 'ipreview' :: 'IndexedFold' i s a -> s -> 'Maybe' (i, a) -- 'ipreview' :: 'IndexedLens'' i s a -> s -> 'Maybe' (i, a) -- 'ipreview' :: 'IndexedTraversal'' i s a -> s -> 'Maybe' (i, a) -- @ -- -- However, it may be useful to think of its full generality when working with -- a 'Control.Monad.Monad' transformer stack: -- -- @ -- 'ipreview' :: 'MonadReader' s m => 'IndexedGetter' s a -> m ('Maybe' (i, a)) -- 'ipreview' :: 'MonadReader' s m => 'IndexedFold' s a -> m ('Maybe' (i, a)) -- 'ipreview' :: 'MonadReader' s m => 'IndexedLens'' s a -> m ('Maybe' (i, a)) -- 'ipreview' :: 'MonadReader' s m => 'IndexedTraversal'' s a -> m ('Maybe' (i, a)) -- @ ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) ipreview :: forall s (m :: * -> *) i a. MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) ipreview IndexedGetting i (First (i, a)) s a l = forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a asks (forall a. First a -> Maybe a getFirst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall i m s a. IndexedGetting i m s a -> (i -> a -> m) -> s -> m ifoldMapOf IndexedGetting i (First (i, a)) s a l (\i i a a -> forall a. Maybe a -> First a First (forall a. a -> Maybe a Just (i i, a a)))) {-# INLINE ipreview #-} -- | Retrieve a function of the first value targeted by a 'Fold' or -- 'Traversal' (or 'Just' the result from a 'Getter' or 'Lens'). -- -- This is usually applied in the 'Control.Monad.Reader.Reader' -- 'Control.Monad.Monad' @(->) s@. -- @ -- 'previews' = 'views' '.' 'pre' -- @ -- -- @ -- 'previews' :: 'Getter' s a -> (a -> r) -> s -> 'Maybe' r -- 'previews' :: 'Fold' s a -> (a -> r) -> s -> 'Maybe' r -- 'previews' :: 'Lens'' s a -> (a -> r) -> s -> 'Maybe' r -- 'previews' :: 'Iso'' s a -> (a -> r) -> s -> 'Maybe' r -- 'previews' :: 'Traversal'' s a -> (a -> r) -> s -> 'Maybe' r -- @ -- -- However, it may be useful to think of its full generality when working with -- a 'Monad' transformer stack: -- -- @ -- 'previews' :: 'MonadReader' s m => 'Getter' s a -> (a -> r) -> m ('Maybe' r) -- 'previews' :: 'MonadReader' s m => 'Fold' s a -> (a -> r) -> m ('Maybe' r) -- 'previews' :: 'MonadReader' s m => 'Lens'' s a -> (a -> r) -> m ('Maybe' r) -- 'previews' :: 'MonadReader' s m => 'Iso'' s a -> (a -> r) -> m ('Maybe' r) -- 'previews' :: 'MonadReader' s m => 'Traversal'' s a -> (a -> r) -> m ('Maybe' r) -- @ previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) previews :: forall s (m :: * -> *) r a. MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) previews Getting (First r) s a l a -> r f = forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a asks (forall a. First a -> Maybe a getFirst forall b c a. (b -> c) -> (a -> b) -> a -> c . forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Getting (First r) s a l (forall a. Maybe a -> First a First forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. a -> Maybe a Just forall b c a. (b -> c) -> (a -> b) -> a -> c . a -> r f)) {-# INLINE previews #-} -- | Retrieve a function of the first index and value targeted by an 'IndexedFold' or -- 'IndexedTraversal' (or 'Just' the result from an 'IndexedGetter' or 'IndexedLens'). -- See also ('^@?'). -- -- @ -- 'ipreviews' = 'views' '.' 'ipre' -- @ -- -- This is usually applied in the 'Control.Monad.Reader.Reader' -- 'Control.Monad.Monad' @(->) s@. -- -- @ -- 'ipreviews' :: 'IndexedGetter' i s a -> (i -> a -> r) -> s -> 'Maybe' r -- 'ipreviews' :: 'IndexedFold' i s a -> (i -> a -> r) -> s -> 'Maybe' r -- 'ipreviews' :: 'IndexedLens'' i s a -> (i -> a -> r) -> s -> 'Maybe' r -- 'ipreviews' :: 'IndexedTraversal'' i s a -> (i -> a -> r) -> s -> 'Maybe' r -- @ -- -- However, it may be useful to think of its full generality when working with -- a 'Control.Monad.Monad' transformer stack: -- -- @ -- 'ipreviews' :: 'MonadReader' s m => 'IndexedGetter' i s a -> (i -> a -> r) -> m ('Maybe' r) -- 'ipreviews' :: 'MonadReader' s m => 'IndexedFold' i s a -> (i -> a -> r) -> m ('Maybe' r) -- 'ipreviews' :: 'MonadReader' s m => 'IndexedLens'' i s a -> (i -> a -> r) -> m ('Maybe' r) -- 'ipreviews' :: 'MonadReader' s m => 'IndexedTraversal'' i s a -> (i -> a -> r) -> m ('Maybe' r) -- @ ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) ipreviews :: forall s (m :: * -> *) i r a. MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) ipreviews IndexedGetting i (First r) s a l i -> a -> r f = forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a asks (forall a. First a -> Maybe a getFirst forall b c a. (b -> c) -> (a -> b) -> a -> c . forall i m s a. IndexedGetting i m s a -> (i -> a -> m) -> s -> m ifoldMapOf IndexedGetting i (First r) s a l (\i i -> forall a. Maybe a -> First a First forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. a -> Maybe a Just forall b c a. (b -> c) -> (a -> b) -> a -> c . i -> a -> r f i i)) {-# INLINE ipreviews #-} ------------------------------------------------------------------------------ -- Preuse ------------------------------------------------------------------------------ -- | Retrieve the first value targeted by a 'Fold' or 'Traversal' (or 'Just' the result -- from a 'Getter' or 'Lens') into the current state. -- -- @ -- 'preuse' = 'use' '.' 'pre' -- @ -- -- @ -- 'preuse' :: 'MonadState' s m => 'Getter' s a -> m ('Maybe' a) -- 'preuse' :: 'MonadState' s m => 'Fold' s a -> m ('Maybe' a) -- 'preuse' :: 'MonadState' s m => 'Lens'' s a -> m ('Maybe' a) -- 'preuse' :: 'MonadState' s m => 'Iso'' s a -> m ('Maybe' a) -- 'preuse' :: 'MonadState' s m => 'Traversal'' s a -> m ('Maybe' a) -- @ preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a) preuse :: forall s (m :: * -> *) a. MonadState s m => Getting (First a) s a -> m (Maybe a) preuse Getting (First a) s a l = forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a gets (forall s (m :: * -> *) a. MonadReader s m => Getting (First a) s a -> m (Maybe a) preview Getting (First a) s a l) {-# INLINE preuse #-} -- | Retrieve the first index and value targeted by an 'IndexedFold' or 'IndexedTraversal' (or 'Just' the index -- and result from an 'IndexedGetter' or 'IndexedLens') into the current state. -- -- @ -- 'ipreuse' = 'use' '.' 'ipre' -- @ -- -- @ -- 'ipreuse' :: 'MonadState' s m => 'IndexedGetter' i s a -> m ('Maybe' (i, a)) -- 'ipreuse' :: 'MonadState' s m => 'IndexedFold' i s a -> m ('Maybe' (i, a)) -- 'ipreuse' :: 'MonadState' s m => 'IndexedLens'' i s a -> m ('Maybe' (i, a)) -- 'ipreuse' :: 'MonadState' s m => 'IndexedTraversal'' i s a -> m ('Maybe' (i, a)) -- @ ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) ipreuse :: forall s (m :: * -> *) i a. MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) ipreuse IndexedGetting i (First (i, a)) s a l = forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a gets (forall s (m :: * -> *) i a. MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) ipreview IndexedGetting i (First (i, a)) s a l) {-# INLINE ipreuse #-} -- | Retrieve a function of the first value targeted by a 'Fold' or -- 'Traversal' (or 'Just' the result from a 'Getter' or 'Lens') into the current state. -- -- @ -- 'preuses' = 'uses' '.' 'pre' -- @ -- -- @ -- 'preuses' :: 'MonadState' s m => 'Getter' s a -> (a -> r) -> m ('Maybe' r) -- 'preuses' :: 'MonadState' s m => 'Fold' s a -> (a -> r) -> m ('Maybe' r) -- 'preuses' :: 'MonadState' s m => 'Lens'' s a -> (a -> r) -> m ('Maybe' r) -- 'preuses' :: 'MonadState' s m => 'Iso'' s a -> (a -> r) -> m ('Maybe' r) -- 'preuses' :: 'MonadState' s m => 'Traversal'' s a -> (a -> r) -> m ('Maybe' r) -- @ preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) preuses :: forall s (m :: * -> *) r a. MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) preuses Getting (First r) s a l a -> r f = forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a gets (forall s (m :: * -> *) r a. MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) previews Getting (First r) s a l a -> r f) {-# INLINE preuses #-} -- | Retrieve a function of the first index and value targeted by an 'IndexedFold' or -- 'IndexedTraversal' (or a function of 'Just' the index and result from an 'IndexedGetter' -- or 'IndexedLens') into the current state. -- -- @ -- 'ipreuses' = 'uses' '.' 'ipre' -- @ -- -- @ -- 'ipreuses' :: 'MonadState' s m => 'IndexedGetter' i s a -> (i -> a -> r) -> m ('Maybe' r) -- 'ipreuses' :: 'MonadState' s m => 'IndexedFold' i s a -> (i -> a -> r) -> m ('Maybe' r) -- 'ipreuses' :: 'MonadState' s m => 'IndexedLens'' i s a -> (i -> a -> r) -> m ('Maybe' r) -- 'ipreuses' :: 'MonadState' s m => 'IndexedTraversal'' i s a -> (i -> a -> r) -> m ('Maybe' r) -- @ ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) ipreuses :: forall s (m :: * -> *) i r a. MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) ipreuses IndexedGetting i (First r) s a l i -> a -> r f = forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a gets (forall s (m :: * -> *) i r a. MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) ipreviews IndexedGetting i (First r) s a l i -> a -> r f) {-# INLINE ipreuses #-} ------------------------------------------------------------------------------ -- Profunctors ------------------------------------------------------------------------------ -- | This allows you to 'Control.Traversable.traverse' the elements of a pretty much any 'LensLike' construction in the opposite order. -- -- This will preserve indexes on 'Indexed' types and will give you the elements of a (finite) 'Fold' or 'Traversal' in the opposite order. -- -- This has no practical impact on a 'Getter', 'Setter', 'Lens' or 'Iso'. -- -- /NB:/ To write back through an 'Iso', you want to use 'Control.Lens.Isomorphic.from'. -- Similarly, to write back through an 'Prism', you want to use 'Control.Lens.Review.re'. backwards :: (Profunctor p, Profunctor q) => Optical p q (Backwards f) s t a b -> Optical p q f s t a b backwards :: forall (p :: * -> * -> *) (q :: * -> * -> *) (f :: * -> *) s t a b. (Profunctor p, Profunctor q) => Optical p q (Backwards f) s t a b -> Optical p q f s t a b backwards Optical p q (Backwards f) s t a b l p a (f b) f = forall {k} (f :: k -> *) (a :: k). Backwards f a -> f a forwards forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. Optical p q (Backwards f) s t a b l (forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a Backwards forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. p a (f b) f) {-# INLINE backwards #-} ------------------------------------------------------------------------------ -- Indexed Folds ------------------------------------------------------------------------------ -- | Fold an 'IndexedFold' or 'IndexedTraversal' by mapping indices and values to an arbitrary 'Monoid' with access -- to the @i@. -- -- When you don't need access to the index then 'foldMapOf' is more flexible in what it accepts. -- -- @ -- 'foldMapOf' l ≡ 'ifoldMapOf' l '.' 'const' -- @ -- -- @ -- 'ifoldMapOf' :: 'IndexedGetter' i s a -> (i -> a -> m) -> s -> m -- 'ifoldMapOf' :: 'Monoid' m => 'IndexedFold' i s a -> (i -> a -> m) -> s -> m -- 'ifoldMapOf' :: 'IndexedLens'' i s a -> (i -> a -> m) -> s -> m -- 'ifoldMapOf' :: 'Monoid' m => 'IndexedTraversal'' i s a -> (i -> a -> m) -> s -> m -- @ -- ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m ifoldMapOf :: forall i m s a. IndexedGetting i m s a -> (i -> a -> m) -> s -> m ifoldMapOf = coerce :: forall a b. Coercible a b => a -> b coerce {-# INLINE ifoldMapOf #-} -- | Right-associative fold of parts of a structure that are viewed through an 'IndexedFold' or 'IndexedTraversal' with -- access to the @i@. -- -- When you don't need access to the index then 'foldrOf' is more flexible in what it accepts. -- -- @ -- 'foldrOf' l ≡ 'ifoldrOf' l '.' 'const' -- @ -- -- @ -- 'ifoldrOf' :: 'IndexedGetter' i s a -> (i -> a -> r -> r) -> r -> s -> r -- 'ifoldrOf' :: 'IndexedFold' i s a -> (i -> a -> r -> r) -> r -> s -> r -- 'ifoldrOf' :: 'IndexedLens'' i s a -> (i -> a -> r -> r) -> r -> s -> r -- 'ifoldrOf' :: 'IndexedTraversal'' i s a -> (i -> a -> r -> r) -> r -> s -> r -- @ ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf :: forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo r) s a l i -> a -> r -> r f r z = forall a b c. (a -> b -> c) -> b -> a -> c flip forall a. Endo a -> a -> a appEndo r z forall b c a. (b -> c) -> (a -> b) -> a -> c . forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. IndexedGetting i (Endo r) s a l (forall {k} a (b :: k). a -> Const a b Const forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. (a -> a) -> Endo a Endo forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall i a b. (i -> a -> b) -> Indexed i a b Indexed i -> a -> r -> r f) {-# INLINE ifoldrOf #-} -- | Left-associative fold of the parts of a structure that are viewed through an 'IndexedFold' or 'IndexedTraversal' with -- access to the @i@. -- -- When you don't need access to the index then 'foldlOf' is more flexible in what it accepts. -- -- @ -- 'foldlOf' l ≡ 'ifoldlOf' l '.' 'const' -- @ -- -- @ -- 'ifoldlOf' :: 'IndexedGetter' i s a -> (i -> r -> a -> r) -> r -> s -> r -- 'ifoldlOf' :: 'IndexedFold' i s a -> (i -> r -> a -> r) -> r -> s -> r -- 'ifoldlOf' :: 'IndexedLens'' i s a -> (i -> r -> a -> r) -> r -> s -> r -- 'ifoldlOf' :: 'IndexedTraversal'' i s a -> (i -> r -> a -> r) -> r -> s -> r -- @ ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r ifoldlOf :: forall i r s a. IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r ifoldlOf IndexedGetting i (Dual (Endo r)) s a l i -> r -> a -> r f r z = (forall a b c. (a -> b -> c) -> b -> a -> c flip forall a. Endo a -> a -> a appEndo r z forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible b a) => p b c -> q a b -> p a c .# forall a. Dual a -> a getDual) forall (p :: * -> * -> *) b c a. Profunctor p => (b -> c) -> p a b -> p a c `rmap` forall i m s a. IndexedGetting i m s a -> (i -> a -> m) -> s -> m ifoldMapOf IndexedGetting i (Dual (Endo r)) s a l (\i i -> forall a. a -> Dual a Dual forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a. (a -> a) -> Endo a Endo forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a b c. (a -> b -> c) -> b -> a -> c flip (i -> r -> a -> r f i i)) {-# INLINE ifoldlOf #-} -- | Return whether or not any element viewed through an 'IndexedFold' or 'IndexedTraversal' -- satisfy a predicate, with access to the @i@. -- -- When you don't need access to the index then 'anyOf' is more flexible in what it accepts. -- -- @ -- 'anyOf' l ≡ 'ianyOf' l '.' 'const' -- @ -- -- @ -- 'ianyOf' :: 'IndexedGetter' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'ianyOf' :: 'IndexedFold' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'ianyOf' :: 'IndexedLens'' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'ianyOf' :: 'IndexedTraversal'' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- @ ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool ianyOf :: forall i s a. IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool ianyOf = coerce :: forall a b. Coercible a b => a -> b coerce {-# INLINE ianyOf #-} -- | Return whether or not all elements viewed through an 'IndexedFold' or 'IndexedTraversal' -- satisfy a predicate, with access to the @i@. -- -- When you don't need access to the index then 'allOf' is more flexible in what it accepts. -- -- @ -- 'allOf' l ≡ 'iallOf' l '.' 'const' -- @ -- -- @ -- 'iallOf' :: 'IndexedGetter' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'iallOf' :: 'IndexedFold' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'iallOf' :: 'IndexedLens'' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'iallOf' :: 'IndexedTraversal'' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- @ iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool iallOf :: forall i s a. IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool iallOf = coerce :: forall a b. Coercible a b => a -> b coerce {-# INLINE iallOf #-} -- | Return whether or not none of the elements viewed through an 'IndexedFold' or 'IndexedTraversal' -- satisfy a predicate, with access to the @i@. -- -- When you don't need access to the index then 'noneOf' is more flexible in what it accepts. -- -- @ -- 'noneOf' l ≡ 'inoneOf' l '.' 'const' -- @ -- -- @ -- 'inoneOf' :: 'IndexedGetter' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'inoneOf' :: 'IndexedFold' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'inoneOf' :: 'IndexedLens'' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- 'inoneOf' :: 'IndexedTraversal'' i s a -> (i -> a -> 'Bool') -> s -> 'Bool' -- @ inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool inoneOf :: forall i s a. IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool inoneOf IndexedGetting i Any s a l i -> a -> Bool f = Bool -> Bool not forall b c a. (b -> c) -> (a -> b) -> a -> c . forall i s a. IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool ianyOf IndexedGetting i Any s a l i -> a -> Bool f {-# INLINE inoneOf #-} -- | Traverse the targets of an 'IndexedFold' or 'IndexedTraversal' with access to the @i@, discarding the results. -- -- When you don't need access to the index then 'traverseOf_' is more flexible in what it accepts. -- -- @ -- 'traverseOf_' l ≡ 'Control.Lens.Traversal.itraverseOf' l '.' 'const' -- @ -- -- @ -- 'itraverseOf_' :: 'Functor' f => 'IndexedGetter' i s a -> (i -> a -> f r) -> s -> f () -- 'itraverseOf_' :: 'Applicative' f => 'IndexedFold' i s a -> (i -> a -> f r) -> s -> f () -- 'itraverseOf_' :: 'Functor' f => 'IndexedLens'' i s a -> (i -> a -> f r) -> s -> f () -- 'itraverseOf_' :: 'Applicative' f => 'IndexedTraversal'' i s a -> (i -> a -> f r) -> s -> f () -- @ itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f () itraverseOf_ :: forall (f :: * -> *) i r s a. Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f () itraverseOf_ IndexedGetting i (Traversed r f) s a l i -> a -> f r f = forall (f :: * -> *) a. Functor f => f a -> f () void forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (f :: * -> *). Traversed a f -> f a getTraversed forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. IndexedGetting i (Traversed r f) s a l (forall {k} a (b :: k). a -> Const a b Const forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a (f :: * -> *). f a -> Traversed a f Traversed forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall i a b. (i -> a -> b) -> Indexed i a b Indexed i -> a -> f r f) {-# INLINE itraverseOf_ #-} -- | Traverse the targets of an 'IndexedFold' or 'IndexedTraversal' with access to the index, discarding the results -- (with the arguments flipped). -- -- @ -- 'iforOf_' ≡ 'flip' '.' 'itraverseOf_' -- @ -- -- When you don't need access to the index then 'forOf_' is more flexible in what it accepts. -- -- @ -- 'forOf_' l a ≡ 'iforOf_' l a '.' 'const' -- @ -- -- @ -- 'iforOf_' :: 'Functor' f => 'IndexedGetter' i s a -> s -> (i -> a -> f r) -> f () -- 'iforOf_' :: 'Applicative' f => 'IndexedFold' i s a -> s -> (i -> a -> f r) -> f () -- 'iforOf_' :: 'Functor' f => 'IndexedLens'' i s a -> s -> (i -> a -> f r) -> f () -- 'iforOf_' :: 'Applicative' f => 'IndexedTraversal'' i s a -> s -> (i -> a -> f r) -> f () -- @ iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f () iforOf_ :: forall (f :: * -> *) i r s a. Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f () iforOf_ = forall a b c. (a -> b -> c) -> b -> a -> c flip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (f :: * -> *) i r s a. Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f () itraverseOf_ {-# INLINE iforOf_ #-} -- | Run monadic actions for each target of an 'IndexedFold' or 'IndexedTraversal' with access to the index, -- discarding the results. -- -- When you don't need access to the index then 'mapMOf_' is more flexible in what it accepts. -- -- @ -- 'mapMOf_' l ≡ 'Control.Lens.Setter.imapMOf' l '.' 'const' -- @ -- -- @ -- 'imapMOf_' :: 'Monad' m => 'IndexedGetter' i s a -> (i -> a -> m r) -> s -> m () -- 'imapMOf_' :: 'Monad' m => 'IndexedFold' i s a -> (i -> a -> m r) -> s -> m () -- 'imapMOf_' :: 'Monad' m => 'IndexedLens'' i s a -> (i -> a -> m r) -> s -> m () -- 'imapMOf_' :: 'Monad' m => 'IndexedTraversal'' i s a -> (i -> a -> m r) -> s -> m () -- @ imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m () imapMOf_ :: forall (m :: * -> *) i r s a. Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m () imapMOf_ IndexedGetting i (Sequenced r m) s a l i -> a -> m r f = forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r liftM forall a. a -> () skip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a (m :: * -> *). Sequenced a m -> m a getSequenced forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall {k} a (b :: k). Const a b -> a getConst forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. IndexedGetting i (Sequenced r m) s a l (forall {k} a (b :: k). a -> Const a b Const forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall a (m :: * -> *). m a -> Sequenced a m Sequenced forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. forall i a b. (i -> a -> b) -> Indexed i a b Indexed i -> a -> m r f) {-# INLINE imapMOf_ #-} -- | Run monadic actions for each target of an 'IndexedFold' or 'IndexedTraversal' with access to the index, -- discarding the results (with the arguments flipped). -- -- @ -- 'iforMOf_' ≡ 'flip' '.' 'imapMOf_' -- @ -- -- When you don't need access to the index then 'forMOf_' is more flexible in what it accepts. -- -- @ -- 'forMOf_' l a ≡ 'Control.Lens.Traversal.iforMOf' l a '.' 'const' -- @ -- -- @ -- 'iforMOf_' :: 'Monad' m => 'IndexedGetter' i s a -> s -> (i -> a -> m r) -> m () -- 'iforMOf_' :: 'Monad' m => 'IndexedFold' i s a -> s -> (i -> a -> m r) -> m () -- 'iforMOf_' :: 'Monad' m => 'IndexedLens'' i s a -> s -> (i -> a -> m r) -> m () -- 'iforMOf_' :: 'Monad' m => 'IndexedTraversal'' i s a -> s -> (i -> a -> m r) -> m () -- @ iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m () iforMOf_ :: forall (m :: * -> *) i r s a. Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m () iforMOf_ = forall a b c. (a -> b -> c) -> b -> a -> c flip forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (m :: * -> *) i r s a. Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m () imapMOf_ {-# INLINE iforMOf_ #-} -- | Concatenate the results of a function of the elements of an 'IndexedFold' or 'IndexedTraversal' -- with access to the index. -- -- When you don't need access to the index then 'concatMapOf' is more flexible in what it accepts. -- -- @ -- 'concatMapOf' l ≡ 'iconcatMapOf' l '.' 'const' -- 'iconcatMapOf' ≡ 'ifoldMapOf' -- @ -- -- @ -- 'iconcatMapOf' :: 'IndexedGetter' i s a -> (i -> a -> [r]) -> s -> [r] -- 'iconcatMapOf' :: 'IndexedFold' i s a -> (i -> a -> [r]) -> s -> [r] -- 'iconcatMapOf' :: 'IndexedLens'' i s a -> (i -> a -> [r]) -> s -> [r] -- 'iconcatMapOf' :: 'IndexedTraversal'' i s a -> (i -> a -> [r]) -> s -> [r] -- @ iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r] iconcatMapOf :: forall i r s a. IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r] iconcatMapOf = forall i m s a. IndexedGetting i m s a -> (i -> a -> m) -> s -> m ifoldMapOf {-# INLINE iconcatMapOf #-} -- | The 'ifindOf' function takes an 'IndexedFold' or 'IndexedTraversal', a predicate that is also -- supplied the index, a structure and returns the left-most element of the structure -- matching the predicate, or 'Nothing' if there is no such element. -- -- When you don't need access to the index then 'findOf' is more flexible in what it accepts. -- -- @ -- 'findOf' l ≡ 'ifindOf' l '.' 'const' -- @ -- -- @ -- 'ifindOf' :: 'IndexedGetter' i s a -> (i -> a -> 'Bool') -> s -> 'Maybe' a -- 'ifindOf' :: 'IndexedFold' i s a -> (i -> a -> 'Bool') -> s -> 'Maybe' a -- 'ifindOf' :: 'IndexedLens'' i s a -> (i -> a -> 'Bool') -> s -> 'Maybe' a -- 'ifindOf' :: 'IndexedTraversal'' i s a -> (i -> a -> 'Bool') -> s -> 'Maybe' a -- @ ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a ifindOf :: forall i a s. IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a ifindOf IndexedGetting i (Endo (Maybe a)) s a l i -> a -> Bool f = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo (Maybe a)) s a l (\i i a a Maybe a y -> if i -> a -> Bool f i i a a then forall a. a -> Maybe a Just a a else Maybe a y) forall a. Maybe a Nothing {-# INLINE ifindOf #-} -- | The 'ifindMOf' function takes an 'IndexedFold' or 'IndexedTraversal', a monadic predicate that is also -- supplied the index, a structure and returns in the monad the left-most element of the structure -- matching the predicate, or 'Nothing' if there is no such element. -- -- When you don't need access to the index then 'findMOf' is more flexible in what it accepts. -- -- @ -- 'findMOf' l ≡ 'ifindMOf' l '.' 'const' -- @ -- -- @ -- 'ifindMOf' :: 'Monad' m => 'IndexedGetter' i s a -> (i -> a -> m 'Bool') -> s -> m ('Maybe' a) -- 'ifindMOf' :: 'Monad' m => 'IndexedFold' i s a -> (i -> a -> m 'Bool') -> s -> m ('Maybe' a) -- 'ifindMOf' :: 'Monad' m => 'IndexedLens'' i s a -> (i -> a -> m 'Bool') -> s -> m ('Maybe' a) -- 'ifindMOf' :: 'Monad' m => 'IndexedTraversal'' i s a -> (i -> a -> m 'Bool') -> s -> m ('Maybe' a) -- @ ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a) ifindMOf :: forall (m :: * -> *) i a s. Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a) ifindMOf IndexedGetting i (Endo (m (Maybe a))) s a l i -> a -> m Bool f = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo (m (Maybe a))) s a l (\i i a a m (Maybe a) y -> i -> a -> m Bool f i i a a forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \Bool r -> if Bool r then forall (m :: * -> *) a. Monad m => a -> m a return (forall a. a -> Maybe a Just a a) else m (Maybe a) y) forall a b. (a -> b) -> a -> b $ forall (m :: * -> *) a. Monad m => a -> m a return forall a. Maybe a Nothing {-# INLINE ifindMOf #-} -- | /Strictly/ fold right over the elements of a structure with an index. -- -- When you don't need access to the index then 'foldrOf'' is more flexible in what it accepts. -- -- @ -- 'foldrOf'' l ≡ 'ifoldrOf'' l '.' 'const' -- @ -- -- @ -- 'ifoldrOf'' :: 'IndexedGetter' i s a -> (i -> a -> r -> r) -> r -> s -> r -- 'ifoldrOf'' :: 'IndexedFold' i s a -> (i -> a -> r -> r) -> r -> s -> r -- 'ifoldrOf'' :: 'IndexedLens'' i s a -> (i -> a -> r -> r) -> r -> s -> r -- 'ifoldrOf'' :: 'IndexedTraversal'' i s a -> (i -> a -> r -> r) -> r -> s -> r -- @ ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf' :: forall i r s a. IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf' IndexedGetting i (Dual (Endo (r -> r))) s a l i -> a -> r -> r f r z0 s xs = forall i r s a. IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r ifoldlOf IndexedGetting i (Dual (Endo (r -> r))) s a l forall {b}. i -> (r -> b) -> a -> r -> b f' forall a. a -> a id s xs r z0 where f' :: i -> (r -> b) -> a -> r -> b f' i i r -> b k a x r z = r -> b k forall a b. (a -> b) -> a -> b $! i -> a -> r -> r f i i a x r z {-# INLINE ifoldrOf' #-} -- | Fold over the elements of a structure with an index, associating to the left, but /strictly/. -- -- When you don't need access to the index then 'foldlOf'' is more flexible in what it accepts. -- -- @ -- 'foldlOf'' l ≡ 'ifoldlOf'' l '.' 'const' -- @ -- -- @ -- 'ifoldlOf'' :: 'IndexedGetter' i s a -> (i -> r -> a -> r) -> r -> s -> r -- 'ifoldlOf'' :: 'IndexedFold' i s a -> (i -> r -> a -> r) -> r -> s -> r -- 'ifoldlOf'' :: 'IndexedLens'' i s a -> (i -> r -> a -> r) -> r -> s -> r -- 'ifoldlOf'' :: 'IndexedTraversal'' i s a -> (i -> r -> a -> r) -> r -> s -> r -- @ ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r ifoldlOf' :: forall i r s a. IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r ifoldlOf' IndexedGetting i (Endo (r -> r)) s a l i -> r -> a -> r f r z0 s xs = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo (r -> r)) s a l forall {b}. i -> a -> (r -> b) -> r -> b f' forall a. a -> a id s xs r z0 where f' :: i -> a -> (r -> b) -> r -> b f' i i a x r -> b k r z = r -> b k forall a b. (a -> b) -> a -> b $! i -> r -> a -> r f i i r z a x {-# INLINE ifoldlOf' #-} -- | Monadic fold right over the elements of a structure with an index. -- -- When you don't need access to the index then 'foldrMOf' is more flexible in what it accepts. -- -- @ -- 'foldrMOf' l ≡ 'ifoldrMOf' l '.' 'const' -- @ -- -- @ -- 'ifoldrMOf' :: 'Monad' m => 'IndexedGetter' i s a -> (i -> a -> r -> m r) -> r -> s -> m r -- 'ifoldrMOf' :: 'Monad' m => 'IndexedFold' i s a -> (i -> a -> r -> m r) -> r -> s -> m r -- 'ifoldrMOf' :: 'Monad' m => 'IndexedLens'' i s a -> (i -> a -> r -> m r) -> r -> s -> m r -- 'ifoldrMOf' :: 'Monad' m => 'IndexedTraversal'' i s a -> (i -> a -> r -> m r) -> r -> s -> m r -- @ ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r ifoldrMOf :: forall (m :: * -> *) i r s a. Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r ifoldrMOf IndexedGetting i (Dual (Endo (r -> m r))) s a l i -> a -> r -> m r f r z0 s xs = forall i r s a. IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r ifoldlOf IndexedGetting i (Dual (Endo (r -> m r))) s a l forall {b}. i -> (r -> m b) -> a -> r -> m b f' forall (m :: * -> *) a. Monad m => a -> m a return s xs r z0 where f' :: i -> (r -> m b) -> a -> r -> m b f' i i r -> m b k a x r z = i -> a -> r -> m r f i i a x r z forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= r -> m b k {-# INLINE ifoldrMOf #-} -- | Monadic fold over the elements of a structure with an index, associating to the left. -- -- When you don't need access to the index then 'foldlMOf' is more flexible in what it accepts. -- -- @ -- 'foldlMOf' l ≡ 'ifoldlMOf' l '.' 'const' -- @ -- -- @ -- 'ifoldlMOf' :: 'Monad' m => 'IndexedGetter' i s a -> (i -> r -> a -> m r) -> r -> s -> m r -- 'ifoldlMOf' :: 'Monad' m => 'IndexedFold' i s a -> (i -> r -> a -> m r) -> r -> s -> m r -- 'ifoldlMOf' :: 'Monad' m => 'IndexedLens'' i s a -> (i -> r -> a -> m r) -> r -> s -> m r -- 'ifoldlMOf' :: 'Monad' m => 'IndexedTraversal'' i s a -> (i -> r -> a -> m r) -> r -> s -> m r -- @ ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r ifoldlMOf :: forall (m :: * -> *) i r s a. Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r ifoldlMOf IndexedGetting i (Endo (r -> m r)) s a l i -> r -> a -> m r f r z0 s xs = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo (r -> m r)) s a l forall {b}. i -> a -> (r -> m b) -> r -> m b f' forall (m :: * -> *) a. Monad m => a -> m a return s xs r z0 where f' :: i -> a -> (r -> m b) -> r -> m b f' i i a x r -> m b k r z = i -> r -> a -> m r f i i r z a x forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= r -> m b k {-# INLINE ifoldlMOf #-} -- | Extract the key-value pairs from a structure. -- -- When you don't need access to the indices in the result, then 'toListOf' is more flexible in what it accepts. -- -- @ -- 'toListOf' l ≡ 'map' 'snd' '.' 'itoListOf' l -- @ -- -- @ -- 'itoListOf' :: 'IndexedGetter' i s a -> s -> [(i,a)] -- 'itoListOf' :: 'IndexedFold' i s a -> s -> [(i,a)] -- 'itoListOf' :: 'IndexedLens'' i s a -> s -> [(i,a)] -- 'itoListOf' :: 'IndexedTraversal'' i s a -> s -> [(i,a)] -- @ itoListOf :: IndexedGetting i (Endo [(i,a)]) s a -> s -> [(i,a)] itoListOf :: forall i a s. IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)] itoListOf IndexedGetting i (Endo [(i, a)]) s a l = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo [(i, a)]) s a l (\i i a a -> ((i i,a a)forall a. a -> [a] -> [a] :)) [] {-# INLINE itoListOf #-} -- | An infix version of 'itoListOf'. -- @ -- ('^@..') :: s -> 'IndexedGetter' i s a -> [(i,a)] -- ('^@..') :: s -> 'IndexedFold' i s a -> [(i,a)] -- ('^@..') :: s -> 'IndexedLens'' i s a -> [(i,a)] -- ('^@..') :: s -> 'IndexedTraversal'' i s a -> [(i,a)] -- @ (^@..) :: s -> IndexedGetting i (Endo [(i,a)]) s a -> [(i,a)] s s ^@.. :: forall s i a. s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)] ^@.. IndexedGetting i (Endo [(i, a)]) s a l = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo [(i, a)]) s a l (\i i a a -> ((i i,a a)forall a. a -> [a] -> [a] :)) [] s s {-# INLINE (^@..) #-} -- | Perform a safe 'head' (with index) of an 'IndexedFold' or 'IndexedTraversal' or retrieve 'Just' the index and result -- from an 'IndexedGetter' or 'IndexedLens'. -- -- When using a 'IndexedTraversal' as a partial 'IndexedLens', or an 'IndexedFold' as a partial 'IndexedGetter' this can be a convenient -- way to extract the optional value. -- -- @ -- ('^@?') :: s -> 'IndexedGetter' i s a -> 'Maybe' (i, a) -- ('^@?') :: s -> 'IndexedFold' i s a -> 'Maybe' (i, a) -- ('^@?') :: s -> 'IndexedLens'' i s a -> 'Maybe' (i, a) -- ('^@?') :: s -> 'IndexedTraversal'' i s a -> 'Maybe' (i, a) -- @ (^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a) s s ^@? :: forall s i a. s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a) ^@? IndexedGetting i (Endo (Maybe (i, a))) s a l = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo (Maybe (i, a))) s a l (\i i a x Maybe (i, a) _ -> forall a. a -> Maybe a Just (i i,a x)) forall a. Maybe a Nothing s s {-# INLINE (^@?) #-} -- | Perform an *UNSAFE* 'head' (with index) of an 'IndexedFold' or 'IndexedTraversal' assuming that it is there. -- -- @ -- ('^@?!') :: s -> 'IndexedGetter' i s a -> (i, a) -- ('^@?!') :: s -> 'IndexedFold' i s a -> (i, a) -- ('^@?!') :: s -> 'IndexedLens'' i s a -> (i, a) -- ('^@?!') :: s -> 'IndexedTraversal'' i s a -> (i, a) -- @ (^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a) s s ^@?! :: forall s i a. HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a) ^@?! IndexedGetting i (Endo (i, a)) s a l = forall i r s a. IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r ifoldrOf IndexedGetting i (Endo (i, a)) s a l (\i i a x (i, a) _ -> (i i,a x)) (forall a. HasCallStack => String -> a error String "(^@?!): empty Fold") s s {-# INLINE (^@?!) #-} -- | Retrieve the index of the first value targeted by a 'IndexedFold' or 'IndexedTraversal' which is equal to a given value. -- -- @ -- 'Data.List.elemIndex' ≡ 'elemIndexOf' 'folded' -- @ -- -- @ -- 'elemIndexOf' :: 'Eq' a => 'IndexedFold' i s a -> a -> s -> 'Maybe' i -- 'elemIndexOf' :: 'Eq' a => 'IndexedTraversal'' i s a -> a -> s -> 'Maybe' i -- @ elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i elemIndexOf :: forall a i s. Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i elemIndexOf IndexedGetting i (First i) s a l a a = forall i s a. IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i findIndexOf IndexedGetting i (First i) s a l (a a forall a. Eq a => a -> a -> Bool ==) {-# INLINE elemIndexOf #-} -- | Retrieve the indices of the values targeted by a 'IndexedFold' or 'IndexedTraversal' which are equal to a given value. -- -- @ -- 'Data.List.elemIndices' ≡ 'elemIndicesOf' 'folded' -- @ -- -- @ -- 'elemIndicesOf' :: 'Eq' a => 'IndexedFold' i s a -> a -> s -> [i] -- 'elemIndicesOf' :: 'Eq' a => 'IndexedTraversal'' i s a -> a -> s -> [i] -- @ elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i] elemIndicesOf :: forall a i s. Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i] elemIndicesOf IndexedGetting i (Endo [i]) s a l a a = forall i s a. IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i] findIndicesOf IndexedGetting i (Endo [i]) s a l (a a forall a. Eq a => a -> a -> Bool ==) {-# INLINE elemIndicesOf #-} -- | Retrieve the index of the first value targeted by a 'IndexedFold' or 'IndexedTraversal' which satisfies a predicate. -- -- @ -- 'Data.List.findIndex' ≡ 'findIndexOf' 'folded' -- @ -- -- @ -- 'findIndexOf' :: 'IndexedFold' i s a -> (a -> 'Bool') -> s -> 'Maybe' i -- 'findIndexOf' :: 'IndexedTraversal'' i s a -> (a -> 'Bool') -> s -> 'Maybe' i -- @ findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i findIndexOf :: forall i s a. IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i findIndexOf IndexedGetting i (First i) s a l a -> Bool p = forall s (m :: * -> *) a. MonadReader s m => Getting (First a) s a -> m (Maybe a) preview (IndexedGetting i (First i) s a l forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (p :: * -> * -> *) (f :: * -> *) a. (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a filtered a -> Bool p forall b c a. (b -> c) -> (a -> b) -> a -> c . forall i (p :: * -> * -> *) (f :: * -> *) s. (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s) asIndex) {-# INLINE findIndexOf #-} -- | Retrieve the indices of the values targeted by a 'IndexedFold' or 'IndexedTraversal' which satisfy a predicate. -- -- @ -- 'Data.List.findIndices' ≡ 'findIndicesOf' 'folded' -- @ -- -- @ -- 'findIndicesOf' :: 'IndexedFold' i s a -> (a -> 'Bool') -> s -> [i] -- 'findIndicesOf' :: 'IndexedTraversal'' i s a -> (a -> 'Bool') -> s -> [i] -- @ findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i] findIndicesOf :: forall i s a. IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i] findIndicesOf IndexedGetting i (Endo [i]) s a l a -> Bool p = forall a s. Getting (Endo [a]) s a -> s -> [a] toListOf (IndexedGetting i (Endo [i]) s a l forall b c a. (b -> c) -> (a -> b) -> a -> c . forall (p :: * -> * -> *) (f :: * -> *) a. (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a filtered a -> Bool p forall b c a. (b -> c) -> (a -> b) -> a -> c . forall i (p :: * -> * -> *) (f :: * -> *) s. (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s) asIndex) {-# INLINE findIndicesOf #-} ------------------------------------------------------------------------------- -- Converting to Folds ------------------------------------------------------------------------------- -- | Filter an 'IndexedFold' or 'IndexedGetter', obtaining an 'IndexedFold'. -- -- >>> [0,0,0,5,5,5]^..traversed.ifiltered (\i a -> i <= a) -- [0,5,5,5] -- -- Compose with 'ifiltered' to filter another 'IndexedLens', 'IndexedIso', 'IndexedGetter', 'IndexedFold' (or 'IndexedTraversal') with -- access to both the value and the index. -- -- Note: As with 'filtered', this is /not/ a legal 'IndexedTraversal', unless you are very careful not to invalidate the predicate on the target! ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a ifiltered :: forall i (p :: * -> * -> *) (f :: * -> *) a. (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a ifiltered i -> a -> Bool p p a (f a) f = forall i a b. (i -> a -> b) -> Indexed i a b Indexed forall a b. (a -> b) -> a -> b $ \i i a a -> if i -> a -> Bool p i i a a then forall i (p :: * -> * -> *) a b. Indexable i p => p a b -> i -> a -> b indexed p a (f a) f i i a a else forall (f :: * -> *) a. Applicative f => a -> f a pure a a {-# INLINE ifiltered #-} -- | Obtain an 'IndexedFold' by taking elements from another -- 'IndexedFold', 'IndexedLens', 'IndexedGetter' or 'IndexedTraversal' while a predicate holds. -- -- @ -- 'itakingWhile' :: (i -> a -> 'Bool') -> 'IndexedFold' i s a -> 'IndexedFold' i s a -- 'itakingWhile' :: (i -> a -> 'Bool') -> 'IndexedTraversal'' i s a -> 'IndexedFold' i s a -- 'itakingWhile' :: (i -> a -> 'Bool') -> 'IndexedLens'' i s a -> 'IndexedFold' i s a -- 'itakingWhile' :: (i -> a -> 'Bool') -> 'IndexedGetter' i s a -> 'IndexedFold' i s a -- @ -- -- Note: Applying 'itakingWhile' to an 'IndexedLens' or 'IndexedTraversal' will still allow you to use it as a -- pseudo-'IndexedTraversal', but if you change the value of any target to one where the predicate returns -- 'False', then you will break the 'Traversal' laws and 'Traversal' fusion will no longer be sound. itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s))) s a -> Optical' p q f s a itakingWhile :: forall i (p :: * -> * -> *) (q :: * -> * -> *) (f :: * -> *) a s. (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s))) s a -> Optical' p q f s a itakingWhile i -> a -> Bool p Optical' (Indexed i) q (Const (Endo (f s))) s a l p a (f a) f = (forall a b c. (a -> b -> c) -> b -> a -> c flip forall a. Endo a -> a -> a appEndo forall (f :: * -> *) a. (Contravariant f, Applicative f) => f a noEffect forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible b a) => p b c -> q a b -> p a c .# forall {k} a (b :: k). Const a b -> a getConst) forall (p :: * -> * -> *) b c a. Profunctor p => (b -> c) -> p a b -> p a c `rmap` Optical' (Indexed i) q (Const (Endo (f s))) s a l forall {b} {b}. Indexed i a (Const (Endo (f b)) b) g where g :: Indexed i a (Const (Endo (f b)) b) g = forall i a b. (i -> a -> b) -> Indexed i a b Indexed forall a b. (a -> b) -> a -> b $ \i i a a -> forall {k} a (b :: k). a -> Const a b Const forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a. (a -> a) -> Endo a Endo forall a b. (a -> b) -> a -> b $ if i -> a -> Bool p i i a a then (forall i (p :: * -> * -> *) a b. Indexable i p => p a b -> i -> a -> b indexed p a (f a) f i i a a forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b *>) else forall a b. a -> b -> a const forall (f :: * -> *) a. (Contravariant f, Applicative f) => f a noEffect {-# INLINE itakingWhile #-} -- | Obtain an 'IndexedFold' by dropping elements from another 'IndexedFold', 'IndexedLens', 'IndexedGetter' or 'IndexedTraversal' while a predicate holds. -- -- @ -- 'idroppingWhile' :: (i -> a -> 'Bool') -> 'IndexedFold' i s a -> 'IndexedFold' i s a -- 'idroppingWhile' :: (i -> a -> 'Bool') -> 'IndexedTraversal'' i s a -> 'IndexedFold' i s a -- see notes -- 'idroppingWhile' :: (i -> a -> 'Bool') -> 'IndexedLens'' i s a -> 'IndexedFold' i s a -- see notes -- 'idroppingWhile' :: (i -> a -> 'Bool') -> 'IndexedGetter' i s a -> 'IndexedFold' i s a -- @ -- -- Note: As with `droppingWhile` applying 'idroppingWhile' to an 'IndexedLens' or 'IndexedTraversal' will still -- allow you to use it as a pseudo-'IndexedTraversal', but if you change the value of the first target to one -- where the predicate returns 'True', then you will break the 'Traversal' laws and 'Traversal' fusion will -- no longer be sound. idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a idroppingWhile :: forall i (p :: * -> * -> *) (q :: * -> * -> *) (f :: * -> *) a s t. (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a idroppingWhile i -> a -> Bool p Optical (Indexed i) q (Compose (State Bool) f) s t a a l p a (f a) f = (forall a b c. (a -> b -> c) -> b -> a -> c flip forall s a. State s a -> s -> a evalState Bool True forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible b a) => p b c -> q a b -> p a c .# forall {k1} {k2} (f :: k1 -> *) (g :: k2 -> k1) (a :: k2). Compose f g a -> f (g a) getCompose) forall (p :: * -> * -> *) b c a. Profunctor p => (b -> c) -> p a b -> p a c `rmap` Optical (Indexed i) q (Compose (State Bool) f) s t a a l Indexed i a (Compose (State Bool) f a) g where g :: Indexed i a (Compose (State Bool) f a) g = forall i a b. (i -> a -> b) -> Indexed i a b Indexed forall a b. (a -> b) -> a -> b $ \ i i a a -> forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1). f (g a) -> Compose f g a Compose forall a b. (a -> b) -> a -> b $ forall s (m :: * -> *) a. MonadState s m => (s -> (a, s)) -> m a state forall a b. (a -> b) -> a -> b $ \Bool b -> let b' :: Bool b' = Bool b Bool -> Bool -> Bool && i -> a -> Bool p i i a a in (if Bool b' then forall (f :: * -> *) a. Applicative f => a -> f a pure a a else forall i (p :: * -> * -> *) a b. Indexable i p => p a b -> i -> a -> b indexed p a (f a) f i i a a, Bool b') {-# INLINE idroppingWhile #-} ------------------------------------------------------------------------------ -- Misc. ------------------------------------------------------------------------------ skip :: a -> () skip :: forall a. a -> () skip a _ = () {-# INLINE skip #-} ------------------------------------------------------------------------------ -- Folds with Reified Monoid ------------------------------------------------------------------------------ -- | Fold a value using a specified 'Fold' and 'Monoid' operations. -- This is like 'foldBy' where the 'Foldable' instance can be -- manually specified. -- -- @ -- 'foldByOf' 'folded' ≡ 'foldBy' -- @ -- -- @ -- 'foldByOf' :: 'Getter' s a -> (a -> a -> a) -> a -> s -> a -- 'foldByOf' :: 'Fold' s a -> (a -> a -> a) -> a -> s -> a -- 'foldByOf' :: 'Lens'' s a -> (a -> a -> a) -> a -> s -> a -- 'foldByOf' :: 'Traversal'' s a -> (a -> a -> a) -> a -> s -> a -- 'foldByOf' :: 'Iso'' s a -> (a -> a -> a) -> a -> s -> a -- @ -- -- >>> foldByOf both (++) [] ("hello","world") -- "helloworld" foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a foldByOf :: forall s a. Fold s a -> (a -> a -> a) -> a -> s -> a foldByOf Fold s a l a -> a -> a f a z = forall a t. (a -> a -> a) -> a -> (forall s. Reifies s (ReifiedMonoid a) => t -> ReflectedMonoid a s) -> t -> a reifyMonoid a -> a -> a f a z (forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Fold s a l forall {k} a (s :: k). a -> ReflectedMonoid a s ReflectedMonoid) -- | Fold a value using a specified 'Fold' and 'Monoid' operations. -- This is like 'foldMapBy' where the 'Foldable' instance can be -- manually specified. -- -- @ -- 'foldMapByOf' 'folded' ≡ 'foldMapBy' -- @ -- -- @ -- 'foldMapByOf' :: 'Getter' s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r -- 'foldMapByOf' :: 'Fold' s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r -- 'foldMapByOf' :: 'Traversal'' s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r -- 'foldMapByOf' :: 'Lens'' s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r -- 'foldMapByOf' :: 'Iso'' s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r -- @ -- -- >>> foldMapByOf both (+) 0 length ("hello","world") -- 10 foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r foldMapByOf :: forall s a r. Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r foldMapByOf Fold s a l r -> r -> r f r z a -> r g = forall a t. (a -> a -> a) -> a -> (forall s. Reifies s (ReifiedMonoid a) => t -> ReflectedMonoid a s) -> t -> a reifyMonoid r -> r -> r f r z (forall r s a. Getting r s a -> (a -> r) -> s -> r foldMapOf Fold s a l (forall {k} a (s :: k). a -> ReflectedMonoid a s ReflectedMonoid forall (p :: * -> * -> *) a b c (q :: * -> * -> *). (Profunctor p, Coercible c b) => q b c -> p a b -> p a c #. a -> r g))